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THE USE OF POISSON REGRESSION IN THE 
SOCIOLOGICAL STUDY OF SUICIDE

Ferenc Moksony–rita Hegedűs1

ABSTRACT This paper explains how Poisson regression can be used in studies 
in which the dependent variable describes the number of occurrences of some 
rare event such as suicide. After pointing out why ordinary linear regression is 
inappropriate for treating dependent variables of this sort, we go on to present 
the basic Poisson regression model and show how it fits in the broad class of 
generalized linear models. Then we turn to discussing a major problem of Poisson 
regression known as overdispersion and suggest possible solutions, including the 
correction of standard errors and negative binomial regression. The paper ends 
with a detailed empirical example, drawn from our own research on suicide. 
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In social research, we often encounter dependent variables that describe 
the frequency of occurrence of events of various kinds. Students of deviant 
behavior, for example, look at whether media reporting of celebrity suicides 
leads to an increase in the number of self-destruction; demographers study 
the impact of environmental hazards on the number of birth defects; and 
sociologists of science examine the factors that influence the frequency 
with which publications are cited by fellow researchers. In cases like these, 
scholars frequently rely on ordinary linear regression to analyze their data. 
This sometimes produces acceptable results, especially when the mean 
frequency of occurrence of the event under study is relatively large, since 
in this situation the distribution of the dependent variable does not usually 
deviate substantially from the normal distribution assumed by ordinary least 
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squares regression. 
Often, however, the event we are interested in explaining is rare and the 

distribution of the dependent variable is highly skewed, with frequencies 
peaking at the lowest value and sharply declining toward the upper end of the 
scale. Figure 1 illustrates this, showing the frequency distribution of suicides 
in Hungarian villages from 1990 to 1995.2 

Figure 1 Frequency distribution of suicide in Hungarian villages, 1990–1995

What we see on this graph is a far cry from the familiar symmetrical bell-
shaped curve of normal distribution: almost 800 villages had absolutely no 
suicide during the six years under study and another 600 had but one. The 
number of communities with many cases of death, in contrast, is very low, 
with only 38 villages registering more than twenty suicides. Variables with 
such asymmetric, right-skewed distributions can be approximated with an 
important class of discrete distribution, Poisson distribution.3

2  The graph displays data for areas officially recognized as villages for the whole period from 
1990 to 1995.

3  As the mean frequency of occurrence of the event under study increases, the shape of the 
Poisson distribution gradually approaches that of normal distribution (see, e.g., Sváb 1981: 
498). The Poisson distribution, then, is of greatest importance for the study of rare events (cf., 
Land - McCall 1996).

        Figure 1. Frequency distribution of suicide in Hungarian villages, 1990–1995
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PROBLEMS OF ORDINARY LEAST SQUARES AND 
POSSIBLE SOLUTIONS 

One important characteristic of Poisson distribution is that the mean is equal 
to the variance. This is easy to understand if we regard the Poisson distribution 
as an extreme case of binomial distribution in which the probability of one of 
two possible outcomes (e.g., suicide/no suicide, birth defect/no birth defect) 
is very small. The mean of a binomially distributed variable is

and its variance is

where n is the number of observations and p is the relative frequency of one 
of the two possible outcomes. As p gets smaller and smaller, the term in 
parentheses on the right hand side of the equation approaches 1, and thus s2, 
the variance, approaches np, the mean.

How does this characteristic of Poisson distribution affect the use of 
ordinary linear regression? In regression analysis, we assume the conditional 
mean of the dependent variable is some function of the explanatory variables; 
that is, we assume that the former changes in a systematic way with the values 
of the latter. With Poisson-distributed dependent variables, this assumption 
implies that the conditional variance of the dependent variable, being equal to 
the mean, also changes with the values of the explanatory variables, violating 
an important requirement of ordinary least squares regression, namely, that 
the conditional variance of the dependent variable is the same for all levels of 
the independent variables (homoscedasticity).

Conventional regression methods, then, are not generally appropriate 
for dependent variables that describe the frequency of rare events such as 
suicides or birth defects. What next, then? One option is to transform the 
dependent variable in order to make it satisfy the assumptions underlying 
ordinary least squares, and then use the transformed data in place of the 
original ones. Researchers taking this approach commonly employ the 
square-root transformation, which has the advantage of eliminating the mean-
variance identity, since the variance of the square-root of a Poisson variable is 
independent of its mean (Chatterjee & Price 1977: 39). An additional benefit 
is that the distribution of the new variable will be more similar to the normal 
distribution, which is important for significance tests.
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While transforming the dependent variable is a common practice that is 
widely adopted by researchers (e.g., Moksony 2001), another possibility is to 
modify the regression model, making it suitable for the analysis of Poisson 
variables. This approach, in some sense, is the reverse of the previous 
one: rather than tailoring the distribution of the dependent variable to the 
requirements of ordinary least squares, here we proceed the other way around 
and tailor the regression model to the distribution of the dependent variable. 
This “custom-made” version of regression analysis is known as Poisson 
regression.

Poisson regression belongs to the family of generalized linear models 
(Hoffman 2004; Agresti 1996: Ch. 4). These models extend the scope of 
ordinary linear regression in two ways. First, they describe transformations 
of the conditional mean of the dependent variable, rather than the mean itself, 
as linear functions of explanatory variables; second, they allow the dependent 
variable to have conditional distributions other than the normal. Various 
forms of generalized linear models differ from each other in the particular 
type of transformation applied and the specific distribution assumed for the 
dependent variable. Table 1, adapted from Agresti (1996: 97), lists the most 
important of these models.

Table 1 Generalized linear models

Model
Transformation 

applied to the mean 
Distribution of 

Dependent Variable
Type of explanatory 

variables

Poisson regression Logarithm Poisson
Numerical and 

Categorical

Logistic regression Logit Binomial
Numerical and 

Categorical

Linear regression Identity Normal Numerical

Analysis of variance Identity Normal Categorical

Analysis of covariance Identity Normal
Numerical and 

Categorical

Source: Agresti 1996: 97 (Table 4.5).

In Poisson regression, as can be seen, logarithmic transformation is used 
and the dependent variable is taken to follow a Poisson distribution. In 
contrast, in logistic regression, a logit transformation is employed and the 
dependent variable is assumed to have a binomial distribution. The table 
also includes ordinary linear regression, analysis of variance and analysis 
of covariance, which together comprise what is known as the general linear 
model (Fennessey 1968; Cohen 1968). In these three types of models, the 
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normal distribution is assumed for the dependent variable and the identity 
transformation is used; that is, the conditional mean itself is directly described 
as a linear function of the explanatory variables. All these variants of the 
general linear model, then, are just special cases of the generalized linear 
model.4

THE POISSON REGRESSION MODEL AND 
INTERPRETATION OF ITS COEFFICIENTS

In the simple bivariate case, the Poisson regression model has the following 
form:

where l denotes the mean or expected value of the dependent variable, X is 
the independent variable, and b0 and b1 are the regression coefficients to be 
estimated. These coefficients have essentially the same meaning as in ordinary 
linear regression; b1, in particular gives the change in the natural logarithm 
of the mean frequency of the dependent variable per one unit change in the 
explanatory variable. This interpretation is not very user-friendly, however; 
researchers, after all, do not usually like to think in terms of logarithms. It is, 
therefore, useful to reformulate Eq. (1) by taking the antilogarithm of both 
sides:

In contrast to b1 , which represented the additive effect of the explanatory 
variable on the log of the mean frequency, exp(b1 ) represents its multiplicative 
effect on the mean frequency itself, indicating how many times larger (or 
smaller) the mean frequency of the phenomenon under study becomes as the 
independent variable increases by one unit. To see this, suppose X is equal to 
a, which can be any number. Eq. (2) then looks like this:
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takes on one particular value, namely, a. Let us now increase the value of the 

4   Roughly speaking, while the general linear model extends the scope of ordinary regression by 
allowing categorical independent variables to be included in the analysis, generalized linear 
models go one step further and also lift the constraints imposed on the dependent variable.
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We can see that as the value of the explanatory variable, X , has increased from a to (a+1),

that is, by one unit, the mean frequency of the dependent variable,  , has indeed changed by 

a factor equal to exp( 1 ).  

It can be helpful to express this change in percentage form using the following formula: 

 .1)exp(100changepercentage 1  

If, for example, the dependent variable is the number of suicides in a village, the explanatory 

variable is the unemployment rate, and the value of 1  is, say, .055, then 

,057.1)055exp(.)exp( 1   and 7.5)1057.1(1001)(exp(100 1   , which means each 

percentage point rise in the level of unemployment increases, on average, the number of 
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.055, then exp (b1) = exp (.055) = 1.057 and 100*(exp (b1)–1=100*(1.057–
1)=5.7, which means each percentage point rise in the level of unemployment 
increases, on average, the number of suicides by 5.7 percent. In the same way, 
if the independent variable is type of settlement, with villages coded 0 and 
cities 1, and the value of b1  is, say, –.035, then exp (b1)=exp(–.35)=.70, and 
100*(exp (b1)–1)=100*(.70–1)= –30, which means the number of suicides is, 
on average, 30 percent less in cities than in villages.5 

INCLUDING POPULATION AT RISK IN THE MODEL

One important feature of the Poisson regression model discussed thus far 
is that it does not take differences in the size of the population at risk into 
account. This is clearly a limitation because, with other factors remaining 

5  It should be noted, though, that with dichotomous independent variables like type of settlement 
(cities/villages), exp (b1) can only be interpreted directly as reflecting the impact of those 
variables when we use dummy coding; that is, when we assign the values 0 and 1 to the two 
categories. This is because in this case, the distance or difference between the categories 
exactly equals one unit. With effect coding, in contrast, when the values –1 and +1 are used to 
denote the two categories, the distance or difference is two rather than one unit and thus exp 
(b1)no longer directly indicates the influence of the explanatory variable under study. To get this 
influence, exp (b1) has to be raised to the second power, to accommodate the greater distance 
between categories. 
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constant, a larger population at risk can obviously be expected to produce 
a greater frequency of the phenomenon under study. More populous cities, 
for instance, will in general have higher numbers of suicides simply because 
of their dimensions, quite regardless of the impact of other factors, such as 
poverty, unemployment, or residential segregation. 

Differences in the size of the population at risk can be controlled for by 
applying some sort of standardization, dividing the mean frequency by the 
population at risk:

where n is the population at risk, such as the number of individuals living 
in a city or village. This modified version of the Poisson regression model 
describes the rate of occurrence of the phenomenon under study, rather than 
its absolute frequency, as a linear function of X, the independent variable. By 
making use of the properties of logarithms, Eq. (3) can also be written as

which, in turn, can be rearranged to get:

This model differs from the one given by Eq. (1) in that it contains a separate 
explanatory variable, ln(n), generally called an offset, which reflects the 
size of the population at risk, the coefficient of which is automatically taken 
to equal 1. If the size of the population at risk is the same in each unit of 
observation, then ln(n) will be constant and thus can be incorporated into b0, 
which takes us back to the original formulation; that is, Eq. (1).

OVERDISPERSION

Besides including a separate independent variable to capture differences in 
the size of the population at risk, the initial model of Poisson regression also 
often needs to be modified for another reason. One important characteristics 
of the Poisson distribution, as already noted, is that the mean is equal 
to the variance. The default model of Poisson regression is built on this 
identity; computations are performed assuming the mean and the variance 
of the dependent variable really are the same. In many cases, however, this 
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assumption does not hold true and the variance exceeds the mean. This is 
what is known in the statistical literature as overdispersion (Agresti 1996: 
92–3; Le 1998: 226–228). 

Overdispersion generally arises from one of two sources (King 1989: 
766–769; Osgood 2000: 28). First, in almost all research, some explanatory 
variables uncorrelated with the ones included in the analysis are left out 
from the model, either because they do not come to mind, or because we 
cannot capture them empirically. Suppose, for example, the frequency of 
suicide for cities or villages is influenced by economic development and 
regional culture, but we only include the former in the study. What is likely 
to happen in this situation? Holding the level of economic development 
constant, areas belonging to that level will be geographically – and culturally 
– heterogeneous; they will be a mixture of sub-populations, with each sub-
population having its own distinct, regionally-determined mean frequency 
of suicide. That is, the mean of the dependent variable for a certain value 
of explanatory variable will not be constant, as is assumed by the Poisson 
distribution, but we will instead have as many different means as there are 
regions. The result of this heterogeneity is that the variance of the conditional 
distribution of suicide – that is, of the distribution pertaining to a given 
level of economic development – will be greater than expected based on the 
Poisson distribution. The source of overdispersion, then, in this case is the 
excess variation caused by explanatory variables left out from the model; 
quite similarly to ordinary linear regression, where the impact of the omission 
of independent variables uncorrelated with those included in the analysis is to 
increase the error or residual variance.

Another factor that may give rise to overdispersion is dependence among 
observations. One assumption of Poisson distribution is that observations are 
independent of each other; that the occurrence of an event (e.g., a suicide) does 
not influence the occurrence of another. What happens when this requirement 
is not met; when, for example, the incidence of a suicide increases the chance 
of another? In this situation, the frequency of small and large values – that 
is, those at the two extreme tails – will be greater than expected based on 
the Poisson distribution and the variance of the variable will increase as a 
result. If, for instance, kids in a school imitate each other’s behavior, then 
instead of observing a random distribution of cases, what we will likely see 
is that while nothing happens for months, a substantial number of suicide 
attempts take place within a very short time frame. The literature is replete 
with examples of such time-space clusterings of cases (e.g., Phillips 1974; 
Phillips and Carstensen 1986; Gould et al. 1990). From our point of view, the 
important thing about these examples is that the process of imitation and the 
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resulting dependence of observations may lead to an increase of the variance 
of the dependent variable, thus violating a fundamental assumption of Poisson 
distribution, namely that the mean is equal to the variance.

How does overdispersion affect Poisson regression results? The most 
serious consequence is that although regression coefficients remain unbiased, 
their standard errors will be underestimated and thus confidence intervals will 
be unduly narrow and significance tests will give overly optimistic results. 
One way to cope with this problem is to adjust the standard errors using a 
correction factor that reflects the degree of overdispersion. This correction 
is performed based on an analysis of the residuals from the original Poisson 
regression and involves forming the ratio of the sum of squared standardized 
residuals to their degrees of freedom. If this ratio, also called dispersion 
parameter, turns out to be considerably greater than 1, then, provided the 
model is well-specified6, this is a sign of overdispersion and standard errors 
can be adjusted by multiplying them with the square root of the dispersion 
parameter (Agresti 1996: 93; Allison 2001: 223; Gelman and Hill 2007: 114-
116).   

Another way, besides correcting standard errors, to cure the problem of 
overdispersion is to switch to a model that incorporates the excess variability 
not captured by Poisson regression. In this new model, the conditional mean of 
the dependent variable is no longer a constant, as in the original formulation, 
but a variable that scatters randomly around some central value, due to the 
effect of omitted explanatory variables. What we do, basically, is to add a 
random component to Eq. (2): 

where l is a random variable that replaces l from Eq. (2) and e is the 
newly added random error term that represents the additional heterogeneity 
introduced by causal factors not explicitly considered in the analysis. 
The main difference between Eqs. (2) and (6) is that while in Eq. (2) for 
each level of the independent variable we had a single mean value of the 
dependent variable (l), in Eq. (6), we have a whole distribution of means (l), 
corresponding to the fact that now the omitted variables subsumed in the error 
term make the individual means randomly deviate from the level determined 

6  This qualification is important because a high value for the ratio of the sum of squared standardized 
residuals to their degrees of freedom may also indicate lack of fit or misspecification, rather 
than overdispersion, such as when a linear model is used to describe a curvilinear relationship 
(Bair, 2013). 
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by the systematic part of the model (Long 1997: 230–231; Gardner et al. 
1995: 399–400). 

This modification of Poisson regression, then, goes beyond the initial 
model by changing the mean of the distribution from a constant to a variable. 
In the original formulation, the dependent variable (Y) was a random 
variable that scattered around the mean (l) following a Poisson distribution. 
The mean itself, however, was a constant – its value was unequivocally 
determined by the value of the explanatory variable. In the new model, Y 
continues to be a random variable scattering around a mean level following 
a Poisson distribution; but now, this mean level is also a random variable 
that fluctuates, following a Gamma-distribution, around some central value, 
due to the random error, e. Since the expected value of the error is zero by 
assumption, the central value that the individual means (l) scatter around is 
identical to the mean from the original model given by Eq. (2); that is,

.)
~

( ll =E
In final analysis, then, in the modified form of Poisson regression we have a 
mixture of two different distributions: first, we have the dependent variable 
(Y) that scatters around the mean (l) following a Poisson distribution; second, 
we have the mean that is itself a random variable that fluctuates around a 
central value following a Gamma-distribution. The result of the combination 
of these two distribution is the negative binomial distribution, which is why 
the modified form of Poisson regression described here is called negative 
binomial regression.

The advantage of negative binomial regression over conventional Poisson 
regression is that it does not require the variance to be equal to the mean and 
allows the former to exceed the latter. As against the original form of Poisson 
regression, where

in negative binomial regression,

and
where α is the dispersion parameter that indicates the degree of overdispersion. 
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AN EXAMPLE: LOCAL AREA DEPRIVATION AND 
SUICIDE IN RURAL HUNGARY 

To illustrate the use of the methods discussed in the previous sections of 
this paper, we now present results from one of our studies that looked at the 
impact of deprivation on suicide in rural Hungary. Given the main character of 
our article, in what follows, we focus on methodological issues at the expense 
of substantive details. The analysis spanned the years from 1990 to 1995 and 
covered areas officially qualified as villages throughout the whole period. 
The number of villages meeting this criterion was 2869 and the number 
of suicides committed in those villages was 9237. Statistical data analysis 
proceeded in two steps. We first employed principal component analysis to 
create a composite measure of deprivation, then we used that measure as the 
main explanatory variable in a Poisson regression in which the number of 
suicides was the dependent variable and the size of the population at risk was 
entered as an offset.

The following indicators were included in the principal component analysis:
– Number of cars per 1,000 inhabitants, 1992-1995
– Power consumption per household, 1993-1995
– Quality of educational infrastructure and health services, 19937

– Unemployment rate, 1993-1994
– Percentage of the population living on welfare, 1993-1995
– Percentage of the population receiving income supplement, 1993-1995
– Net migration, 1990-1995
– Dependency rate8 
Figure 2 shows the principal component loadings for these indicators. 

Variables capturing economic development, such as power consumption and 
the number of cars, all have negative loadings, while those reflecting the lack 
thereof, such as unemployment and percentage living on welfare, all have 
positive loadings, lending some face validity to the principal component as a 
summary measure of deprivation.

7  This variable measures the number of educational and health institutions such as schools and 
hospitals.

8 This is the ratio of individuals below 18 and above 59 to those between 18 and 59.
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Figure 2. Graphic display of principal component loadings

Having constructed our composite index of deprivation, in the second phase 
of the analysis, we ran Poisson regression, using the following model:

where li is the average number of suicide in village i during 1990 to 1995; 
n

i
 is the size of the population for the same village in the same period; and 

X
i
 is the principal component score for village i. We employed the statistical 

software Stata 8.0 to estimate the regression coefficients, b0 and b1.
Table 2 displays the results obtained from Poisson regression. The 

coefficient for the principal component score is, as can be seen, positive and 
statistically significant, with a one unit increase in our summary measure of 
deprivation being associated with an increase of about .115 in the natural 
logarithm of the number of suicides. To get rid of logarithms, we exponentiate 
the coefficient and get exp(.1148) = 1.122, which means that a one unit rise in 
the principal component score raises the number of suicides by 12.2 percent. 
All in all, these findings suggest that local deprivation aggravates the risk of 
self-destruction.
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Having constructed our composite index of deprivation, in the second phase of the analysis, 

we ran Poisson regression, using the following model: 
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where i  is the average number of suicide in village i during 1990 to 1995; ni is the size of 

the population for the same village in the same period; and Xi is the principal component 

score for village i. We employed the statistical software Stata 8.0 to estimate the regression 

coefficients, 0  and 1 .   

Table 2 displays the results obtained from Poisson regression. The coefficient for the 

principal component score is, as can be seen, positive and statistically significant, with a one 

unit increase in our summary measure of deprivation being associated with an increase of 

about .115 in the natural logarithm of the number of suicides. To get rid of logarithms, we 

exponentiate the coefficient and get exp(.1148) = 1.122, which means that a one unit rise in 

the principal component score raises the number of suicides by 12.2 percent. All in all, these 

findings suggest that local deprivation aggravates the risk of self-destruction. 

[TABLE 2 GOES HERE] 
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Table 2. Effect of deprivation on suicide. Poisson regression results 

Variable Coefficient Std. error Z-value
Antilog 

of coefficient
Principal 
component score

     .1148*  .0114    10.11 1.122

Constant -7.7462  .0110 -706.17

n = 2869  * p < .001

Checking for overdispersion

As already noted, overdispersion, while not introducing bias into the 
regression coefficients, leads to an underestimation of standard errors, thereby 
potentially undermining the validity of confidence intervals and significance 
tests. It is, therefore, important, before going too far with our conclusions, to 
check for the presence of overdispersion and adjust the analysis accordingly, 
if necessary. 

For this purpose, we compared the observed distribution of suicides with 
the one predicted from the Poisson model. The latter gives, for different 
frequencies of occurrence, the probability that we would expect if the mean 
number of suicides was the same as the one actually obtained (3.22) and the 
assumptions underlying the Poisson model were fully met. Figure 3 displays 
the results. As can be seen, at the two tails of the distribution, the solid line 
runs above the dotted one, indicating that at the lowest and highest number 
of suicides, observed proportions exceed Poisson probabilities. In the middle 
portion of graph, in contrast, the solid line consistently stays below the dotted 
one, implying that over this range, observed proportions are lower than those 
predicted from the model. Observed values, then, appear to be spread out more 
widely than those calculated based on the Poisson distribution. Corresponding 
to this finding, we found the variance of the observed distribution to be 
much larger (22.72) than its mean (3.22) and the ratio of the sum of squared 
standardized residuals to their degrees of freedom also proved to be higher 
than 1 (1.42), which, as already noted, is a sign of overdispersion, provided 
the model is well-specified. All in all, these results speak for the fact that 
overdispersion presents a real threat to the validity of conclusions drawn from 
our study.
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Figure 3. Observed and expected probabilities (based on Poisson distribution, mean = 
3.22)

Correcting for overdispersion

Earlier in this paper, we described two ways to handle the problem of 
overdispersion: adjusting standard errors and switching from Poisson to 
negative binomial regression. As for the former, original standard errors 
are, as previously explained, multiplied by the square root of the dispersion 
parameter, which is the ratio of the sum of squared standardized residuals 
to their degrees of freedom. Table 4 reports these corrected standard errors, 
along with the original ones, so we can better judge the change that results 
from the adjustment.9 

9  Stata reports two different corrected standard errors: one is based on the traditional Pearson 
Chi-square, which is equivalent to the ratio of the sum of squared standardized residuals to 
their degrees of freedom, while the other is calculated using the Likelihood-ratio Chi-square. 
Although the two usually give similar results and thus the choice between them does not 
generally make much difference, statistical theory suggests that we prefer Pearson Chi-square 
to Likelihood-ratio Chi-square (Allison 2001: 223).

Figure 3. Observed and expected probabilities 

(based on Poisson distribution, mean = 3.22) 
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Table 3. Observed and expected distribution of suicide

Number of suicide Observed relative frequency
Expected probability (based on 

Poisson distribution)

0 .273 .040

1 .203 .129

2 .138 .207

3 .099 .222

4 .070 .179

5 .045 .115

6 .029 .062

7 .024 .028

8 .021 .011

9 .021 .004

10 .014 .001

Table 4. Poisson regression: corrected standard errors

Variable Coefficient
Original standard 

error

Corrected standard error 
based on

Pearson 
Chi-square

Likelihood-ratio 
Chi-square

Principal 
component score

    .1148
        .0114

(10.11)
        .0140

  (8.50)
      .0135
       (8.20)

Constant -7.7462
        .0110 
(-706.17)

        .0130
(-593.65)

     .0140
  (-573.22)

Note: Numbers in parentheses below standard errors are z-values

As can be seen, although the standard errors have increased somewhat after 
correcting them for overdispersion and the z-values have correspondingly 
declined slightly (since the coefficients themselves have remained 
unchanged), the effect of deprivation, as captured by the principal component 
score, continues to be highly statistically significant: the z-value is 6.74 and 
the associated p-value is well below the usual 5% threshold.

Besides adjusting the standard errors, we also ran negative binomial 
regression, the results of which are displayed in Table 5. The coefficient 
for the principal component score is similar to that obtained from Poisson 
regression, both testifying to the harmful effect of deprivation on suicide. The 
antilogarithm of the coefficient equals 1.109, meaning that a one unit increase 
in the principal component score increases the mean number of suicides by 
about 11 percent. This effect of deprivation is statistically significant, as is the 
estimate of the dispersion parameter, alpha, which provides further evidence 
that overdispersion presents a problem in our study.



112 FERENC MOKSONY–RITA HEGEDŰS

CORVINUS JOURNAL OF SOCIOLOGY AND SOCIAL POLICY  2ZZZZY (2014) 

Table 5. The impact of deprivation on suicide. Results from negative binomial 
regression

Variable Coefficient Std. error Z-value
Antilog 

of coefficient

Principal component score .1034* .0153 6.74 1.109

Constant –7.7816 .0144

Alpha .1462* .0130

n = 2869  * p < .001

Although the two regressions did not produce markedly different results, 
the negative binomial regression appears to fit the data better than the Poisson 
regression. This is evident from Figure 4, where the actual distribution of 
suicides is shown along with the distributions predicted from Poisson and 
negative binomial regressions. As can be seen, while Poisson regression 
systematically underestimates very low and very high frequencies, the 
negative binomial regression gives predicted values that are fairly close to the 
observed ones even at the two tails.

Figure 4. Observed and expected number of suicides, based on Poisson and negative 
binomial regression (mean = 3.22, overdispersion = 1.402)

Figure 4. Observed and expected number of suicides, based on Poisson and 

negative binomial regression (mean = 3.22, overdispersion = 1.402) 
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SUMMARY AND CONCLUSIONS

Our aim with this paper was to give an introduction to Poisson regression, 
which represents an important class of generalized linear models and can 
profitably be used in studies in which the dependent variable describes 
the number of occurrences of some rare event such as suicide. Although 
researchers sometimes apply ordinary linear regression in these situations, 
this method, as we have shown, is not generally appropriate for variables 
of this sort. And while transformation of the dependent variable may help 
alleviate part of the difficulties associated with conventional regression 
techniques, Poisson regression approaches the problem more fittingly by 
tailoring the model to the distribution of the dependent variable, rather than 
the other way around.
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