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COOPERATION IN AN ARROW–KARLIN-TYPE  
SUPPLY CHAIN

Imre Dobos1

ABSTRACT: In this paper, we apply cooperative game theory concepts to analyze 
vertical supply chains. The bullwhip effect in a two-stage supply chain (supplier-
manufacturer) in the framework of the Arrow–Karlin model with linear-convex cost 
functions is considered. It is assumed that both firms minimize their relevant costs, and 
two cases are examined: the supplier and the manufacturer minimize their relevant 
costs in a decentralized and centralized (cooperative) way. The question of how to 
share the savings of the decreased bullwhip effect in the centralized (cooperative) 
model is answered by transferable utility cooperative game theory tools.

KEYWORDS: optimal control, supply chain, bullwhip effect, cooperative game 
theory

INTRODUCTION

In the supply chain literature until the middle of the 2000s only non-cooperative 
game theory concepts were applied; see, e.g., Kogan and Tapiero (2007) and Sethi 
et al. (2005). In this paper, we analyze supply chains using cooperative game 
theory tools. Our main question is how the manufacturer and the supplier should 
share the savings they achieve by harmonizing their production plans. We apply 
the following cooperative game theory concepts: the core (Gillies 1959), the stable 
set (Von Neumann–Morgenstern 1944), the Shapley value (Shapley 1953), and the 
nucleolus (Schmeidler 1969) to answer the above question.

Recently, several papers have investigated supply chains with game theory 
methods. There are two types of supply chains: horizontal and vertical. The 
horizontal supply chain refers to the chain agent’s manufacture or purchase of 
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the same product. Therefore, participants in horizontal supply chains operate 
in the market for the same goods and are literally competitors. This also means 
that if one company in the supply chain increases its market share, it may do so 
at the expense of the other participant. Vertical supply chains have the goal of 
producing and selling a specific final product to the customer. Vertical relations 
are also called manufacturer-retailer, supplier-buyer, supplier-manufacturer, 
or two- or three-level (echelon, stage) supply chains. This means that in such 
a supply chain, the relationship between the participants, i.e., companies, 
is embodied in only one good or service. This supply chain is also called 
vertical because it is the exchange of material and financial resources between 
firms that follows the creation of the product from raw materials to the final 
product. Therefore, the firms in a vertical supply chain can be represented in 
a directed graph, where the graph is connected and circle-free, the vertices of 
the graph represent the firms, and the edges represent the transfers of goods 
(Balakrishnan–Ranganathan 2012). In terms of the two members of the vertical 
supply chain, companies that can be both production and supplier firms, the 
production firm controls the quantity of goods. In contrast, the supplier firm 
can control the chain with the price of the product. The question then arises as 
to whether the two companies optimize their own situation with the help of the 
price-quantity double, or whether they strive for agreement and thus share the 
profit obtained by means of some distribution scheme. Firms in a horizontal 
supply chain cannot be represented by a directed graph structure because there 
is no direct link between the firms in that chain. Such firms only interact in the 
market for the good, and only information can be exchanged between them. 
Papers Drechsel–Kimms (2010), Dror–Hartman (2011), Fiestras-Janeiro et al. 
(2011), and Nagarajan–Sosic (2008) have investigated cooperation in horizontal 
supply chains by means of cooperative game theory. Most of these papers 
analyze joint replenishment and procurement situations in supply chains. Leng 
and Parlar (2010) and Zhao et al. (2010) examined vertical supply chains in 
their papers. The coordination mechanisms are investigated in vertical supply 
chains. These coordination mechanisms are mainly the supply contracts, such 
as option contracts (Zhao et al. 2010) or cost-sharing contracts (Leng–Parlar 
2010). Cachon (2004) supplies a good review of supply contracts.

In order to demonstrate the efficiency of cooperating in a vertical supply 
chain, we consider the so-called bullwhip effect. The bullwhip effect explains 
the fluctuations in sales (demand), manufacturing, and supply. The bullwhip 
effect is based on the observation that for a unit change in demand in the final 
product market, the producing firm will place orders with suppliers that are 
larger than one unit. At the same time, the supplying firm will also place orders 
larger than one unit with its suppliers. For this reason, the vertical supply chain 
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is characterized by a series of ever-increasing and growing orders. This can 
lead to a one percent increase in orders in the market, triggering an increase 
of up to five to ten percent in orders to suppliers through production. This is 
what the name of the effect refers to, as increasing spikes could occur at the 
end of the whip, which is the end of the whip for suppliers. The bullwhip effect 
was first observed by Forrester (1961); later, Lee et al. (1997) rediscovered this 
phenomenon. The authors mentioned four basic causes of the bullwhip effect:

‒  Forrester effect, or lead-times and demand signal processing,
‒  Burbidge effect, or order batching,
‒  Houlihan effect, or rationing and gaming,
‒  promotion effect or price fluctuations.

These (new) names were introduced by Disney and Towill (2003).
Two basic models used to investigate the decision processes of a firm are the 

Wagner–Whitin (1958) and the Arrow–Karlin (1958) models. Both models have 
a stock-flow identity and a cost function. The difference between them lies in the 
cost functions. The well-known lot sizing model of Wagner and Whitin (1958) 
assumes a concave cost function. The second basic model applies a convex cost 
function. 

The basis of this investigation is the well-known Arrow–Karlin-type dynamic 
production-inventory model. In this model, the inventory holding cost is a linear 
function, and the production cost is a non-decreasing and convex function of 
the production level. The latest empirical analysis, see Ghali (2003), shows that 
the convexity of the cost function is a reasonable assumption in production 
economics.

The main goal of this paper is to demonstrate that cooperative game theory tools 
can be applied to vertical supply chain analysis. We consider an Arrow–Karlin-
type two-stage supply chain and analyze whether the bullwhip effect appears 
in this model. To show that because of the bullwhip effect, the cooperation of 
the manufacturer and the supplier induces savings, we develop two models: a 
decentralized and a centralized Arrow–Karlin-type supply chain model. 

The decentralized model assumes that first, the manufacturer solves her 
production planning problem (the market demand is given exogenously), and 
her ordering process is based on the optimal production plan. Then the supplier 
minimizes her costs on the basis of the ordering of the manufacturer. In the 
centralized model, it is assumed that the supply chain participants cooperate, 
i.e., they minimize the sum of their costs. 

In the next step, we compare the production-inventory strategies and the costs 
of the manufacturer and supplier in the two models to show that cooperation 
(centralized model) can reduce the bullwhip effect. This cooperation can be 
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defined as a kind of information sharing, i.e., full information between the 
supply chain parties. 

Finally, we discuss how the manufacturer and the supplier should share the 
savings their cooperation induces. At this point, we use concepts of transferable 
utility cooperative games.

The paper is organized as follows. The decentralized model is discussed in 
the second section. The third section analyzes the centralized (cooperative) 
supply chain model. The fourth section introduces some concepts of cooperative 
game theory and defines supply chain (cooperative) games given by the models 
discussed in earlier sections. Moreover, we apply the above-mentioned four 
solution concepts of transferable utility cooperative games to explain how the 
manufacturer and the supplier should share the savings resulting from their 
cooperation. An exact numerical example is given in the fifth section. The last 
section briefly concludes.

THE DECENTRALIZED SYSTEM

We consider a simple supply chain consisting of two firms: a supplier and a 
manufacturer. We assume that the firms are independent, i.e., each decides to 
minimize their own costs. The firms have two stores: a store for raw materials 
and a store for end products. Moreover, we assume that the input stores are 
empty, i.e., the firms can order a suitable quantity and that they can get the 
ordered quantity. The production processes have a known, constant lead time. 
The material flow of the model is depicted in Figure 1.

Figure 1. Material flow in the models
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to be zero because it will be manufactured immediately. The assumption 
facilitates the mathematical examination of the model.
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THE CENTRALIZED SYSTEM

In this section we solve the centralized model, i.e., the model where the 
manufacturer and supplier coordinate their decisions. The model is as follows:
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The necessary and sufficient conditions for the optimal solution of problems (5)-(8) are 
contained in Appendix 2. The optimal centralized production strategies for the manufacturer 
and the supplier, respectively, are 
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Unfortunately, there is no efficient algorithm to determine the optimal path of this model. 

THE COOPERATIVE GAME THEORETICAL SOLUTION OF  
COST-SHARING 

This section provides a sharing rule for the savings the cooperation induces. It is easy to see the 
following result: 
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The necessary and sufficient conditions for the optimal solution of problems 
(5)-(8) are contained in Appendix 2. The optimal centralized production 
strategies for the manufacturer and the supplier, respectively, are
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Unfortunately, there is no efficient algorithm to determine the optimal path of this model. 

THE COOPERATIVE GAME THEORETICAL SOLUTION OF  
COST-SHARING 

This section provides a sharing rule for the savings the cooperation induces. It is easy to see the 
following result: 

.
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Henceforth let v denote the supply chain game defined above.
To summarize the above discussion, the decentralized and centralized 

models generate a (TU cooperative) game. To answer how the players should 
share the savings their cooperation induces, we apply four solution concepts of 
cooperative game theory. 

First, we introduce the concept of core (Gillies 1959). In our model, the core 
of the supply chain game v is defined as follows:
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where xm and xs are coordinates belonging to the manufacturer and the supplier, 
respectively.

The core can be described as it consists of allocations of the total cost of 
the centralized model so that none of the players can be better off by leaving 
the centralized model by stopping cooperation, i.e., the core consists of stable 
(robust) allocations of costs. It is easy to see that in this model, the core is not 
empty, i.e., there is a stable allocation of costs.

Von Neumann and Morgenstern (1944) introduced the concept of stable set 
S(v). The stable set is also called the Neumann–Morgenstern solution. In our 
model, the stable set is as follows:

Let set I(v) be defined as 
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Then I(v) is called the set of imputations in the supply chain game v. The stable 

set of supply chain game v, S(v) is a subset of I(v) such that… 
‒  inner stability: for any )(vSx∈ , there is no )(vSy∈  such that 

smsm xxyy +<+ ,
‒  outer stability: for all )()( vSvIx −∈  there exists )(vIy∈  such that 

smsm xxyy +>+ .

The two stability conditions say that any element of the stable set cannot be 
better than any other point of the stable set, and for any imputation not in the 
stable set, an element of the stable set dominates the given imputation. 

It is easy to see that in this model since I(v) = C(v) and the two stability 
conditions are meaningless, we get the following result:

Lemma 5: Any supply chain game v has a unique stable set, and S(v) = C(v).

Both the core and the stable set have the disadvantage that they generally 
consist of many points, i.e., are set-valued solutions. Therefore, the following 
natural question arises: How can we pick out only one point as a solution? Next, 
we consider two point-valued solutions.
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Shapley (1953) introduced the following point-valued solution concept: The 
Shapley value of the manufacturer and the supplier, respectively, in the supply 
chain game. v

 8 

cooperation, i.e., the core consists of stable (robust) allocations of costs. It is easy to see that in 
this model, the core is not empty, i.e., there is a stable allocation of costs. 

Von Neumann and Morgenstern (1944) introduced the concept of stable set S(v). The stable set 
is also called the Neumann-Morgenstern solution. In our model, the stable set is as follows: 

Let set I(v) be defined as },,:{)( },{ d
ss

d
mm

c
mssm

sm JxJxJxxxvI ≤≤=+ℜ∈= . Then )(vI  is 
called the set of imputations in the supply chain game v . The stable set of supply chain game 
v , )(vS  is a subset of )(vI  such that…  

‒ inner stability: for any )(vSx∈ , there is no )(vSy∈  such that smsm xxyy +<+ , 

‒ outer stability: for all )()( vSvIx −∈  there exists )(vIy∈  such that smsm xxyy +>+ . 

The two stability conditions say that any element of the stable set cannot be better than any 
other point of the stable set, and for any imputation not in the stable set, an element of the stable 
set dominates the given imputation.  

It is easy to see that in this model since )()( vCvI =  and the two stability conditions are 
meaningless, we get the following result: 

Lemma 5  Any supply chain game v  has a unique stable set, and )()( vCvS = . 

Both the core and the stable set have the disadvantage that they generally consist of many 
points, i.e., are set-valued solutions. Therefore, the following natural question arises: How can 
we pick out only one point as a solution? Next, we consider two point-valued solutions. 

Shapley (1953) introduced the following point-valued solution concept: The Shapley value of 
the manufacturer and the supplier, respectively, in the supply chain game. v  

( )d
s

c
ms

d
mm JJJvSh −+=

2
1

2
1)( , 

and 

( )d
m

c
ms

d
ss JJJvSh −+=

2
1

2
1)( . 

The Shapley value can be interpreted as the expected value of the given player’s marginal 
contribution. In other words, e.g., the manufacturer’s Shapley value is the expected value with 
uniform distribution (1/2–1/2) of the manufacturer’s marginal contribution to the cost of the 
two coalitions not containing her to the empty collation ( d

mJ ), and to coalition }{s ( d
s

c
ms JJ − ).  

Next, we show that the Shapley solution is in the core and the stable set in our model. Hence, 
it is a real refinement of these two set-valued solution concepts. 

Lemma 6 For any supply chain game v  ( ) ( )vCvShvSh sm ∈)(,)( . 

Proof. Take the manufacturer first: Lemma 4 implies that 

d
m

d
m

d
s

c
ms

d
mm JJJJJvSh

2
1

2
1)(

2
1

2
1)( +≤−+= ,  

,

and

 8 

cooperation, i.e., the core consists of stable (robust) allocations of costs. It is easy to see that in 
this model, the core is not empty, i.e., there is a stable allocation of costs. 

Von Neumann and Morgenstern (1944) introduced the concept of stable set S(v). The stable set 
is also called the Neumann-Morgenstern solution. In our model, the stable set is as follows: 

Let set I(v) be defined as },,:{)( },{ d
ss

d
mm

c
mssm

sm JxJxJxxxvI ≤≤=+ℜ∈= . Then )(vI  is 
called the set of imputations in the supply chain game v . The stable set of supply chain game 
v , )(vS  is a subset of )(vI  such that…  

‒ inner stability: for any )(vSx∈ , there is no )(vSy∈  such that smsm xxyy +<+ , 

‒ outer stability: for all )()( vSvIx −∈  there exists )(vIy∈  such that smsm xxyy +>+ . 

The two stability conditions say that any element of the stable set cannot be better than any 
other point of the stable set, and for any imputation not in the stable set, an element of the stable 
set dominates the given imputation.  

It is easy to see that in this model since )()( vCvI =  and the two stability conditions are 
meaningless, we get the following result: 

Lemma 5  Any supply chain game v  has a unique stable set, and )()( vCvS = . 

Both the core and the stable set have the disadvantage that they generally consist of many 
points, i.e., are set-valued solutions. Therefore, the following natural question arises: How can 
we pick out only one point as a solution? Next, we consider two point-valued solutions. 

Shapley (1953) introduced the following point-valued solution concept: The Shapley value of 
the manufacturer and the supplier, respectively, in the supply chain game. v  

( )d
s

c
ms

d
mm JJJvSh −+=

2
1

2
1)( , 

and 

( )d
m

c
ms

d
ss JJJvSh −+=

2
1

2
1)( . 

The Shapley value can be interpreted as the expected value of the given player’s marginal 
contribution. In other words, e.g., the manufacturer’s Shapley value is the expected value with 
uniform distribution (1/2–1/2) of the manufacturer’s marginal contribution to the cost of the 
two coalitions not containing her to the empty collation ( d

mJ ), and to coalition }{s ( d
s

c
ms JJ − ).  

Next, we show that the Shapley solution is in the core and the stable set in our model. Hence, 
it is a real refinement of these two set-valued solution concepts. 

Lemma 6 For any supply chain game v  ( ) ( )vCvShvSh sm ∈)(,)( . 

Proof. Take the manufacturer first: Lemma 4 implies that 

d
m

d
m

d
s

c
ms

d
mm JJJJJvSh

2
1

2
1)(

2
1

2
1)( +≤−+= ,  

.

The Shapley value can be interpreted as the expected value of the given player’s 
marginal contribution. In other words, e.g., the manufacturer’s Shapley value is 
the expected value with uniform distribution (1/2–1/2) of the manufacturer’s 
marginal contribution to the cost of the two coalitions not containing her to the 
empty collation ( d

mJ ), and to coalition }{ (

 8 

cooperation, i.e., the core consists of stable (robust) allocations of costs. It is easy to see that in 
this model, the core is not empty, i.e., there is a stable allocation of costs. 

Von Neumann and Morgenstern (1944) introduced the concept of stable set S(v). The stable set 
is also called the Neumann-Morgenstern solution. In our model, the stable set is as follows: 

Let set I(v) be defined as },,:{)( },{ d
ss

d
mm

c
mssm

sm JxJxJxxxvI ≤≤=+ℜ∈= . Then )(vI  is 
called the set of imputations in the supply chain game v . The stable set of supply chain game 
v , )(vS  is a subset of )(vI  such that…  

‒ inner stability: for any )(vSx∈ , there is no )(vSy∈  such that smsm xxyy +<+ , 

‒ outer stability: for all )()( vSvIx −∈  there exists )(vIy∈  such that smsm xxyy +>+ . 

The two stability conditions say that any element of the stable set cannot be better than any 
other point of the stable set, and for any imputation not in the stable set, an element of the stable 
set dominates the given imputation.  

It is easy to see that in this model since )()( vCvI =  and the two stability conditions are 
meaningless, we get the following result: 

Lemma 5  Any supply chain game v  has a unique stable set, and )()( vCvS = . 

Both the core and the stable set have the disadvantage that they generally consist of many 
points, i.e., are set-valued solutions. Therefore, the following natural question arises: How can 
we pick out only one point as a solution? Next, we consider two point-valued solutions. 

Shapley (1953) introduced the following point-valued solution concept: The Shapley value of 
the manufacturer and the supplier, respectively, in the supply chain game. v  

( )d
s

c
ms

d
mm JJJvSh −+=

2
1

2
1)( , 

and 

( )d
m

c
ms

d
ss JJJvSh −+=

2
1

2
1)( . 

The Shapley value can be interpreted as the expected value of the given player’s marginal 
contribution. In other words, e.g., the manufacturer’s Shapley value is the expected value with 
uniform distribution (1/2–1/2) of the manufacturer’s marginal contribution to the cost of the 
two coalitions not containing her to the empty collation ( d

mJ ), and to coalition }{s ( d
s

c
ms JJ − ).  

Next, we show that the Shapley solution is in the core and the stable set in our model. Hence, 
it is a real refinement of these two set-valued solution concepts. 

Lemma 6 For any supply chain game v  ( ) ( )vCvShvSh sm ∈)(,)( . 

Proof. Take the manufacturer first: Lemma 4 implies that 

d
m

d
m

d
s

c
ms

d
mm JJJJJvSh

2
1

2
1)(

2
1

2
1)( +≤−+= ,  

).
Next, we show that the Shapley solution is in the core and the stable set in our 

model. Hence, it is a real refinement of these two set-valued solution concepts.

Lemma 6: For any supply chain game v 

 8 

cooperation, i.e., the core consists of stable (robust) allocations of costs. It is easy to see that in 
this model, the core is not empty, i.e., there is a stable allocation of costs. 

Von Neumann and Morgenstern (1944) introduced the concept of stable set S(v). The stable set 
is also called the Neumann-Morgenstern solution. In our model, the stable set is as follows: 

Let set I(v) be defined as },,:{)( },{ d
ss

d
mm

c
mssm

sm JxJxJxxxvI ≤≤=+ℜ∈= . Then )(vI  is 
called the set of imputations in the supply chain game v . The stable set of supply chain game 
v , )(vS  is a subset of )(vI  such that…  

‒ inner stability: for any )(vSx∈ , there is no )(vSy∈  such that smsm xxyy +<+ , 

‒ outer stability: for all )()( vSvIx −∈  there exists )(vIy∈  such that smsm xxyy +>+ . 

The two stability conditions say that any element of the stable set cannot be better than any 
other point of the stable set, and for any imputation not in the stable set, an element of the stable 
set dominates the given imputation.  

It is easy to see that in this model since )()( vCvI =  and the two stability conditions are 
meaningless, we get the following result: 

Lemma 5  Any supply chain game v  has a unique stable set, and )()( vCvS = . 

Both the core and the stable set have the disadvantage that they generally consist of many 
points, i.e., are set-valued solutions. Therefore, the following natural question arises: How can 
we pick out only one point as a solution? Next, we consider two point-valued solutions. 

Shapley (1953) introduced the following point-valued solution concept: The Shapley value of 
the manufacturer and the supplier, respectively, in the supply chain game. v  

( )d
s

c
ms

d
mm JJJvSh −+=

2
1

2
1)( , 

and 

( )d
m

c
ms

d
ss JJJvSh −+=

2
1

2
1)( . 

The Shapley value can be interpreted as the expected value of the given player’s marginal 
contribution. In other words, e.g., the manufacturer’s Shapley value is the expected value with 
uniform distribution (1/2–1/2) of the manufacturer’s marginal contribution to the cost of the 
two coalitions not containing her to the empty collation ( d

mJ ), and to coalition }{s ( d
s

c
ms JJ − ).  

Next, we show that the Shapley solution is in the core and the stable set in our model. Hence, 
it is a real refinement of these two set-valued solution concepts. 

Lemma 6 For any supply chain game v  ( ) ( )vCvShvSh sm ∈)(,)( . 

Proof. Take the manufacturer first: Lemma 4 implies that 

d
m

d
m

d
s

c
ms

d
mm JJJJJvSh

2
1

2
1)(

2
1

2
1)( +≤−+= ,  

.

Proof. Take the manufacturer first: Lemma 4 implies that

 8 

cooperation, i.e., the core consists of stable (robust) allocations of costs. It is easy to see that in 
this model, the core is not empty, i.e., there is a stable allocation of costs. 

Von Neumann and Morgenstern (1944) introduced the concept of stable set S(v). The stable set 
is also called the Neumann-Morgenstern solution. In our model, the stable set is as follows: 

Let set I(v) be defined as },,:{)( },{ d
ss

d
mm

c
mssm

sm JxJxJxxxvI ≤≤=+ℜ∈= . Then )(vI  is 
called the set of imputations in the supply chain game v . The stable set of supply chain game 
v , )(vS  is a subset of )(vI  such that…  

‒ inner stability: for any )(vSx∈ , there is no )(vSy∈  such that smsm xxyy +<+ , 

‒ outer stability: for all )()( vSvIx −∈  there exists )(vIy∈  such that smsm xxyy +>+ . 

The two stability conditions say that any element of the stable set cannot be better than any 
other point of the stable set, and for any imputation not in the stable set, an element of the stable 
set dominates the given imputation.  

It is easy to see that in this model since )()( vCvI =  and the two stability conditions are 
meaningless, we get the following result: 

Lemma 5  Any supply chain game v  has a unique stable set, and )()( vCvS = . 

Both the core and the stable set have the disadvantage that they generally consist of many 
points, i.e., are set-valued solutions. Therefore, the following natural question arises: How can 
we pick out only one point as a solution? Next, we consider two point-valued solutions. 

Shapley (1953) introduced the following point-valued solution concept: The Shapley value of 
the manufacturer and the supplier, respectively, in the supply chain game. v  

( )d
s

c
ms

d
mm JJJvSh −+=

2
1

2
1)( , 

and 

( )d
m

c
ms

d
ss JJJvSh −+=

2
1

2
1)( . 

The Shapley value can be interpreted as the expected value of the given player’s marginal 
contribution. In other words, e.g., the manufacturer’s Shapley value is the expected value with 
uniform distribution (1/2–1/2) of the manufacturer’s marginal contribution to the cost of the 
two coalitions not containing her to the empty collation ( d

mJ ), and to coalition }{s ( d
s

c
ms JJ − ).  

Next, we show that the Shapley solution is in the core and the stable set in our model. Hence, 
it is a real refinement of these two set-valued solution concepts. 

Lemma 6 For any supply chain game v  ( ) ( )vCvShvSh sm ∈)(,)( . 

Proof. Take the manufacturer first: Lemma 4 implies that 

d
m

d
m

d
s

c
ms

d
mm JJJJJvSh

2
1

2
1)(

2
1

2
1)( +≤−+= ,  , 

i.e. 

 9 

i.e. d
mm JvSh ≤)( . In a similar way, we can see that d

ss JvSh ≤)( .  
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mssm JvShvSh =+ )()(  (see, e.g., Shapley 1953). 
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set, i.e., )())(,)(( vSvShvSh sm ∈ . 

At last, we give the nucleolus of supply chain games. Schmeidler (1969) introduced this point-
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The nucleolus can be interpreted as it is such an allocation that minimizes the maximal exceeds 
the coalitions can achieve. It is a minor calculation to see that the nucleolus and the Shapley 
value coincide in our model. This, the following lemma is about: 

Lemma 7 The nucleolus and the Shapley solution coincide in supply chain games, i.e., for 
any supply chain game v  )()( vShvN = . 

Moreover, Lemma 5 implies that the nucleolus of supply chain games is in the stable set, i.e., 
for any supply chain game v )()( vSvN ∈ . It is well known that the nucleolus is always in the 
core, if the core is nonempty; therefore, the core of a supply chain game is not empty, and 
Lemma 7 implies Lemma 5.  

A NUMERICAL EXAMPLE 

Take the following parameters and cost functions in problems (1)-(2), (3)-(4), and (5)-(8): 

‒ the initial inventory level of the manufacturer: Im0 = 0.0, 
‒ the initial inventory level of the supplier:  Is0 = 0.0, 
‒ the planning horizon:     T = 5 years, 
‒ the demand rate of the manufacturer:  D(t) = 2.5·t, 
‒ the inventory holding cost of the manufacturer: hm = 4.5, 
‒ the inventory holding cost of the supplier:  hs = 3.2, 
‒ the production cost of the manufacturer:  Fm(Pm(t)) = Pm2(t), 
‒ the production cost of the supplier:   Fs(Ps(t)) = 2.5⋅ Ps2(t). 

In the following, we solve the decentralized and centralized problem. 

The solution to the decentralized problem 

The decentralized problem is a hierarchical production planning problem. First, the 
manufacturer solves her planning problem, then the optimal ordering policy is forwarded to the 
supplier. Finally, the supplier optimizes her own relevant costs based on the known ordering 
policy of the manufacturer. The optimal paths can be constructed using the algorithm of Arrow–

. In a similar way, we can see that 
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The nucleolus can be interpreted as it is such an allocation that minimizes the maximal exceeds 
the coalitions can achieve. It is a minor calculation to see that the nucleolus and the Shapley 
value coincide in our model. This, the following lemma is about: 
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Moreover, Lemma 5 implies that the nucleolus of supply chain games is in the stable set, i.e., 
for any supply chain game v )()( vSvN ∈ . It is well known that the nucleolus is always in the 
core, if the core is nonempty; therefore, the core of a supply chain game is not empty, and 
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A NUMERICAL EXAMPLE 
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In the following, we solve the decentralized and centralized problem. 

The solution to the decentralized problem 

The decentralized problem is a hierarchical production planning problem. First, the 
manufacturer solves her planning problem, then the optimal ordering policy is forwarded to the 
supplier. Finally, the supplier optimizes her own relevant costs based on the known ordering 
policy of the manufacturer. The optimal paths can be constructed using the algorithm of Arrow–

.

The nucleolus can be interpreted as it is such an allocation that minimizes the 
maximal exceeds the coalitions can achieve. It is a minor calculation to see that 
the nucleolus and the Shapley value coincide in our model. This, the following 
lemma is about:
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 Lemma 7: The nucleolus and the Shapley solution coincide in supply chain 
games, i.e., for any supply chain game v N(v) = Sh(v).

Moreover, Lemma 5 implies that the nucleolus of supply chain games is in the 
stable set, i.e., for any supply chain game v )()( vSvN ∈ . It is well known that 
the nucleolus is always in the core, if the core is nonempty; therefore, the core of 
a supply chain game is not empty, and Lemma 7 implies Lemma 5. 

A NUMERICAL EXAMPLE

Take the following parameters and cost functions in problems (1)-(2), (3)-(4), 
and (5)-(8):

‒ the initial inventory level of the manufacturer: Im0 = 0.0,
‒ the initial inventory level of the supplier: Is0 = 0.0,
‒ the planning horizon: T = 5 years,
‒ the demand rate of the manufacturer: D(t) = 2.5·t,
‒ the inventory holding cost of the manufacturer: hm = 4.5,
‒ the inventory holding cost of the supplier: hs = 3.2,
‒ the production cost of the manufacturer: Fm(Pm(t)) = Pm

2(t),
‒ the production cost of the supplier: Fs(Ps(t)) = 2.5 ⋅ Ps

2(t).

In the following, we solve the decentralized and centralized problem.

The solution to the decentralized problem

The decentralized problem is a hierarchical production planning problem. 
First, the manufacturer solves her planning problem, then the optimal ordering 
policy is forwarded to the supplier. Finally, the supplier optimizes her own 
relevant costs based on the known ordering policy of the manufacturer. The 
optimal paths can be constructed using the algorithm of Arrow–Karlin (1958) 
or the method of Dobos (1991). The presentation of path construction methods is 
ignored and can be found in the abovementioned papers.
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The problem of the manufacturer is as follows:
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Karlin (1958) or the method of Dobos (1991). The presentation of path construction methods 
is ignored and can be found in the abovementioned papers. 
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and 
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The minimal cost of the supplier is 552.615 units. 

The solution to the centralized problem 

In the following, we solve the centralized problem: 
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The optimal production rates are the following: 

mPc (t) = 0.65 ⋅ t + 4.625, t ∈[0.5] 
and 

sPc (t) = 0.64 ⋅ t + 4.65, t ∈[0.5] . 

The optimal inventory levels for the manufacturer and the supplier, respectively, are 

,625.4925.0)( 2 ∈⋅+⋅−= ttttI c
m [0.5] 

and 
I c (t) = −0.005 ⋅ t 2 + 0.025 ⋅ t, t ∈[0.5]s . 

The minimal cost of the centralized system is 785.714 units, where the manufacturer’s cost is 
286.432 units, and the supplier’s cost is 499.281 units. 

Comparison of the solutions of the decentralized and the centralized system 

First, compare the production rate and inventory level of the manufacturer and the supplier in 
the cases of the decentralized and the centralized system, where )(tI d

m , )(tI c
m , and )(tI c

s  are 
for the inventory level for the manufacturer and for the supplier in the decentralized and the 
centralized model, respectively. In this example, the inventory level of the manufacturer 
decreases in the case of cooperation, i.e., in the centralized system. The inventory level of the 
supplier increases when the participants cooperate in the supply chain, see Figures 2 and 3. 
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The optimal inventory levels for the manufacturer and the supplier, respectively, are 

,625.4925.0)( 2 ∈⋅+⋅−= ttttI c
m [0.5] 

and 
I c (t) = −0.005 ⋅ t 2 + 0.025 ⋅ t, t ∈[0.5]s . 

The minimal cost of the centralized system is 785.714 units, where the manufacturer’s cost is 
286.432 units, and the supplier’s cost is 499.281 units. 

Comparison of the solutions of the decentralized and the centralized system 

First, compare the production rate and inventory level of the manufacturer and the supplier in 
the cases of the decentralized and the centralized system, where )(tI d

m , )(tI c
m , and )(tI c

s  are 
for the inventory level for the manufacturer and for the supplier in the decentralized and the 
centralized model, respectively. In this example, the inventory level of the manufacturer 
decreases in the case of cooperation, i.e., in the centralized system. The inventory level of the 
supplier increases when the participants cooperate in the supply chain, see Figures 2 and 3. 

 .
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manufacturer’s cost is 286.432 units, and the supplier’s cost is 499.281 units.
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Comparison of the solutions of the decentralized and the 
centralized system

First, compare the production rate and inventory level of the manufacturer 
and the supplier in the cases of the decentralized and the centralized system, 
where )(tI d

m , )(tI c
m , and )(tI c

s  are for the inventory level for the manufacturer 
and for the supplier in the decentralized and the centralized model, respectively. 
In this example, the inventory level of the manufacturer decreases in the case of 
cooperation, i.e., in the centralized system. The inventory level of the supplier 
increases when the participants cooperate in the supply chain, see Figures 2 and 3.

Figure 2. The inventory level of the manufacturer in the decentralized and the centralized 
system
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Figure 3. The inventory level of the supplier in the decentralized and the centralized system
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Figure 4. The production rate of the manufacturer in the decentralized and the 
centralized systems
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As we see, the production level in the centralized system is smoother, i.e., the production rate 
growth is smaller than that in the case of the decentralized system. The contrary is true for the 
supplier, i.e., in the decentralized system, the production rate of the supplier is smoother than 

that in the centralized system, where )(tPd
m , )(tPc

m , )(tPd
s  and )(tPc

s  are for the 
production level for the manufacturer and for the supplier in the decentralized and the 
centralized models respectively, and D(t) is for the exogenously given demand, see Figures 4 
and 5. This phenomenon is the decreased bullwhip effect in the centralized model. 

Figure 5. The production rate of the supplier in the decentralized and the centralized system
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As we see, the production level in the centralized system is smoother, i.e., 
the production rate growth is smaller than that in the case of the decentralized 
system. The contrary is true for the supplier, i.e., in the decentralized system, 
the production rate of the supplier is smoother than that in the centralized 
system, where )(tPd

m , )(tPc
m , )(tPd

s  and )(tPc
s  are for the production level for 

the manufacturer and for the supplier in the decentralized and the centralized 
models respectively, and D(t) is for the exogenously given demand, see Figures 
4 and 5. This phenomenon is the decreased bullwhip effect in the centralized 
model.
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Table 1. Optimal costs

Decentralized problem Centralized problem

Manufacturer costs 259.766 286.432

Supplier costs 552.615 499.281

Total costs 812.381 785.714

Source: Author’s own calculation.
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The optimal costs of the decentralized and the centralized problem are 
presented in Table 1. As we have seen, the total cost of the centralized problem 
is less than that of the decentralized one. The cost reduction is approximately 
3.4%. In the centralized problem, the manufacturer cost increases by more than 
10.3%, and the supplier cost decreases by 5.3%.

After the above analysis, the question of how to share the savings that the 
cooperation of the participants in the supply chain induces comes up.

Cost sharing

The Shapley value of the manufacturer and the supplier (this coincides with 
the nucleolus and is in the core and the stable set) are 
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m =  and 281.994J c

s =  a 
transfer is needed to get the Shapley value: the supplier must transfer 13.333 units to the 
manufacturer. This means that the manufacturer and the supplier agree on a contract such that 
the parties commit themselves to cooperate and the supplier commits herself to pay 13.333 units 
to the manufacturer. 

CONCLUSION AND FURTHER RESEARCH 

In this paper, we have solved two two-stage supply chain models: a decentralized and a 
centralized model. We have shown that the cooperation of the two players induces cost savings. 

In the next step, we considered sharing rules for savings. We applied cooperative game theory 
solution concepts to this problem and introduced the concept of supply chain games. It was 
shown that in supply chain games, the core, and the stable set coincide, and so do the Shapley 
value and the nucleolus; therefore, the Shapley value is always in the core. 

As an illustration of our results, we presented an exact number example. In this example, the 
supplier’s cost of adapting production to the fluctuations in the ordering of the manufacturer is 
higher than that of the manufacturer. Moreover, production costs are dominant over inventory 
costs. Therefore, it is not surprising that the supplier has reduced her inventory level in the 
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manufacturer.

CONCLUSION AND FURTHER RESEARCH

In this paper, we have solved two two-stage supply chain models: a 
decentralized and a centralized model. We have shown that the cooperation of 
the two players induces cost savings.

In the next step, we considered sharing rules for savings. We applied 
cooperative game theory solution concepts to this problem and introduced the 
concept of supply chain games. It was shown that in supply chain games, the 
core, and the stable set coincide, and so do the Shapley value and the nucleolus; 
therefore, the Shapley value is always in the core.

As an illustration of our results, we presented an exact number example. In 
this example, the supplier’s cost of adapting production to the fluctuations in the 
ordering of the manufacturer is higher than that of the manufacturer. Moreover, 
production costs are dominant over inventory costs. Therefore, it is not surprising 
that the supplier has reduced her inventory level in the centralized model, and 
the manufacturer’s inventory level is higher than that in the decentralized model, 
and vice versa for the supplier. 
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The reason for this is that the manufacturer minimizes her relevant cost in the 
decentralized model so that her production level is near the demand rate. After 
cooperation, the manufacturer gives up following her cost-optimal production 
strategy to allow the supplier to reduce her own production-inventory cost, 
implying a decrease in the total cost of the supply chain as well, since the 
supplier’s cost-saving balances out the increase in the manufacturer’s cost. 

This phenomenon points to the well-known bullwhip effect of supply chains 
in a way: the supplier decreased the inventory level after information sharing 
(cooperation), and she adjusted her production rate closer to the demand rate.

In this type of supply chain, the two players might have asymmetrical roles. The 
manufacturer may have a much stronger bargaining position than the supplier or 
vice versa. Since this asymmetry in the bargaining powers is exogenously given, 
it is not reflected in the proposed solution or Shapley value. Future research can 
propose solutions concepts that can reflect the exogenously given bargaining 
powers. Deeper insight can be obtained in relation to the cooperation among 
participants of a supply chain if we examine a triadic relationship in a supply 
chain with three players. However, this extension is left for a following paper.
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