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AbstrAct Longitudinal social networks are increasingly given by event data; 
i.e., data coding the time and type of interaction between social actors. Examples 
include networks stemming from computer-mediated communication, open 
collaboration in wikis, phone call data and interaction among political actors. In 
this paper, we propose a general model for networks of dyadic, typed events. We 
decompose the probability of events into two components: the first modeling the 
frequency of interaction and the second modeling the conditional event type, i. e., 
the quality of interaction, given that interaction takes place. 
While our main contribution is methodological, for illustration we apply 
our model to data about political cooperation and conficts collected with the 
Kansas Event Data System. Special emphasis is given to the fact that some 
explanatory variables affect the frequency of interaction while others rather 
determine the level of cooperativeness vs. hostility, if interaction takes place. 
Furthermore, we analyze if and how model components controlling for network 
dependencies affect findings on the effects of more traditional predictors 
such as geographic proximity or joint alliance membership. We argue that 
modeling the conditional event type is a valuable – and in some cases superior 
– alternative to previously proposed models for networks of typed events.  
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1 INTRODUCTION 

More and more social network datasets encode interaction events (such as 
sending an email or co-authoring a scientific article) rather than relational 
states between actors (such as friendship or esteem). The increased availability 
of event data is especially due to the advent of automated data collection  
facilities. For instance, log-data of computer mediated communication (e.g., 
email, Usenet-groups, or social network services), open collaboration in 
wikis, or phone-call data naturally gives rise to event networks. In this paper 
we consider networks of political actors together with interaction events that 
are routinely observed and reported in the news. 

We consider networks of dyadic, typed events where the type is a real 
number indicating the level of cooperativeness (if positive) or hostility (if 
negative). From a modeling point of view, the general research questions 
that we consider here are about the causes and effects of network interaction. 
When analyzing the causes of network events, the network is seen as a 
dependent variable and one seeks to answer questions like what makes actor 
A interact more or less with actor B or what makes actor A engage in a 
specific type of interaction towards actor B. When analyzing the effects 
of events, the network is seen as an explanatory variable and one seeks to 
answer what results from interaction (of a certain type). Here we consider 
network events to be both the dependent and the explanatory variables; 
more specifically, we want to find out how past events (and externally given 
actor and dyad covariates) stochastically determine the frequency and type 
of future events. 

The occurrence of events of specific types can be modeled in at least two 
distinct ways whose difference is crucial for this paper. For illustration, assume 
that we want to model event networks with two types of interaction, positive 
events encoding cooperation and negative events encoding hostilities, and 
that we want to test hypotheses about the causes of both types of events. The 
first way to do so is to adapt the model proposed by Butts (2008). In that 
model there are two different rate functions for the two types of events and the 
estimated parameters reveal which explanatory variables increase or decrease 
the frequency of cooperative or hostile events, respectively. The second 
possibility to model typed events is the one that we propose in this paper. In 
our model there is one rate function modeling the frequency of events of any 
type, and a type function modeling the conditional probability of cooperative 
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versus hostile interaction, given that interaction occurs.5 Thus, the estimated 
parameters in our model reveal what triggers: 

1. an increase/decrease in the frequency of interaction; 
2. positive vs. negative interaction, given that interaction occurs. 

There are at least two benefits resulting from this alternative model for typed 
events. First, the conditional event type models are not restricted to a finite 
number of event types (i. e., to categorical event types) but can also deal with 
types characterized by continuous variables. Second, the results stemming 
from the conditional event type models provide additional information about 
the causes of events and may clarify seemingly counterintuitive findings that 
result from modeling the frequency of typed events separately. For instance, 
we demonstrate in the next section that a bivariate model for international 
relations suggests that countries have an increased probability of engaging 
in a militarized dispute with their alliance partners (compared to countries 
with which they do not share an alliance membership). On the other hand, an 
application of conditional event type models reveals that allies consistently 
show a tendency to engage in cooperative rather than conflictive interaction–
under the precondition that they do interact. 

The remainder of this article is structured as follows. Section 2 introduces a 
dataset on which we conduct an illustrative analysis, reports related previous 
results in international relations research and develops the exemplary 
hypotheses. Our newly-proposed model is described in Section 3 and results 
of the illustrative application of the model are given in Section 4. Section 5 
concludes and indicates future research. 

2 POLITICAL NETWORK ANALYSIS 

Scholars of international politics increasingly realize the advantages 
of network analysis in various contexts (e. g., Maoz 2009; Hafner-Burton 
and Montgomery 2006). One approach within social network analysis, 
structural balance theory, is particularly well suited to addressing questions of 
cooperations and conflict between states.6 A signed network (i. e., a network 

5  Since we consider weighted events later in this paper, we model the conditional probability 
density for event weights, rather than the conditional probability of positive/negative events; 
the latter serves only for simplified illustration. 

6  For a detailed description of structural balance theory see Heider (1946); Cartwright and 
Harary (1956). 
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with positive and negative ties) is balanced if every semi-cycle has an even 
number of negative ties.7 Structural balance theory (SBT) claims that actors 
have a preference for balanced networks. Specifically, if two ties in a triplet 
of actors are present and the third tie is to be created then its sign is predicted 
by the following four rules resulting from SBT: “the friend of a friend is a 
friend,” “the friend of an enemy is an enemy,” “the enemy of a friend is an 
enemy,” and “the enemy of an enemy is a friend.” 

The influence of common friends and enemies on a dyad in political 
networks has been analyzed in Maoz et al. (2007) and Crescenzi (2007). 
Maoz et al. (2007) compute the conditional probabilities of alliances and 
militarized interstate disputes (MIDs) between two countries, given that these 
satisfy the conditions of being (1) friends of enemies, (2) enemies of friends, 
and (3) enemies of enemies (the relations friend and enemy are derived 
from the alliance and MID relations, respectively). It turns out that all three 
preconditions increase both the probability of alliances and the probability of 
MIDs. Thus, the results simultaneously support and reject structural balance 
theory. Seen from a different angle, actors that are indirectly related via a third 
actor have a higher probability to interact–both positively and negatively. This 
result can be refined by applying our newly-proposed network model: later 
in this paper we show that actors that are (say) enemies of enemies have a 
higher probability of interaction but, given that they do interact, their relation 
has a tendency towards cooperation–clearly supporting SBT. In related work, 
Crescenzi (2007) defined a combined dyadic indicator that is positive if the 
two actors evaluate most other actors consistently (both positive or both neg-
ative), negative if they evaluate most other actors inconsistently, and (close 
to) zero if these effects cancel out. Crescenzi operationalized a test of SBT 
by estimating the influence of this indicator on the time it takes until the next 
MID in that dyad breaks out. Indeed, he found that dyads receiving a negative 
score have shorter waiting times until the next conflict. This provides support 
for the combined predictions of structural balance theory. In contrast to Maoz 
et al. (2007) and Crescenzi (2007), we analyze the effect of indirect relations 
on the conditional event type, rather than on the occurrence of ties. Thus, our 
model estimates the sign of a tie (a, b) only if a does interact with b.8

7  A semi-cycle is a sequence of actors v
1
,v

2
,...,v

k+1
 = v

1
, k ≥ 3 where for all i =1,...,k there is a tie 

from v
i 
to v

i+1 
or vice versa.

8  Neither Maoz et al. (2007) nor Crescenzi (2007) use/s daily event data, but rather data coding 
the yearly state of the world system on the country-level. Some researchers argue that yearly 
data is too coarse-grained to capture quick responses to hostility as they occurred, e. g., in the 
Israel/Palestine conflict (King and Lowe 2003, p. 617).
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The analysis of event data (alternatively referred to as time-to-event 
analysis, survival analysis, event history analysis, or lifetime analysis) is an 
established research area; see Lawless (2003) for a general reference. Some 
recent papers analyze network dependencies among events that happen in 
dyads (e. g. Butts 2008; De Nooy 2008, 2011; Brandes et al. 2009; Stadtfeld 
2010). Although event data analysis is common in political science (e. g., 
Box-Steffensmeier and Jones 1997), network dependencies are rarely 
considered there. Exceptions include Goldstein et al. (2001) who applied 
vectorautoregression to the dyadwise aggregated levels of cooperation/
conflict over short time-intervals and Hoff and Ward (2004) who estimate 
dependencies in networks constructed from event data by aggregating over 
the whole observation period. Our work differs from these references since we 
do not aggregate events over time-intervals but rather model the probability 
of each single event. 

In this paper we propose a general model for networks of dyadic typed 
events. With the increase in importance and availability of network event 
data we hope that this model will be applied to a variety of data sets. As 
an illustration, we apply it here to the publically-available data referred to 
as Gulf data coded from full stories from the Kansas Event Data System 
website (KEDS 2012).9 This data set consists of events related to the Persian 
Gulf region for the period from April 15th, 1979 to March 31st, 1999. It 
includes more than 304,000 events among 202 unique actors. For the analysis 
done in this paper we exclude all non-state actors (such as ethnic groups or 
international organizations) yielding 168 actors and more than 217,000 events 
between them. 

The KEDS (Schrodt et al. 1994) is a software tool that automatically 
extracts daily events from news reports. Events encode who did when what 
to whom and, thus, describe time-stamped, dyadic, typed interaction. Event 
types are classified using the World Event/Interaction Survey (WEIS) 
codes (McClelland 1976) and each event type is assigned a weight from the 
interval [–10, 10], where –10 stands for the most hostile and +10 for the most 
cooperative type of interaction (Goldstein 1992). These codings are explained 
in more detail in the following. Descriptive visualization, animation, and 
clustering of this data set can be found, e. g., in Brandes et al. (2006) and 
Brandes and Lerner (2008). 

9  We have chosen the Gulf data set since mainly state actors are involved in this conflict; this 
implies that a consistent set of established alternative explanatory variables (introduced later) 
is available. Note that other data sets available from the KEDS website include many non-state 
actors.
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Roughly spoken, the KEDS software (Schrodt et al. 1994) extracts triples 
of the form (subject, verb, object) from news wire reports. Each 
triple encodes the information that the subject performs an action (specified 
by the verb) towards the object. The subjects and objects are mapped to 
actors defined by the analyst. The following excerpt illustrates the coding of 
some of the actors included in the Gulf data: 

AMERICA [USA] 
CENTRAL INTELLIGENCE AGENCY [USA] 
ISLAMIC_COUNTRIES [ARB] 
ARAB_MONETARY_FUND [ARB] 
GULF STATES [ARB] 

Subjects and objects in news wire texts are interpreted as referring to 
specific actors. For instance, the general term AMERICA as well as the more 
specific CENTRAL INTELLIGENCE AGENCY are mapped to the same actor 
labeled USA. As another example, the tokens ISLAMIC COUNTRIES, ARAB 
MONETARY FUND, and GULF STATES (among others) are mapped to an actor 
labeled ARB. Actor ARB is, thus, an example of a non-state actor which is 
excluded from the network analyzed in this paper. 

The following excerpt is an (incomplete) list of events that happened on 
August 10th, 1990 in the Gulf region. 

900810  ARB  IRQ  012  RETREAT 
900810  IRQ  USA  122  DENIGRATE 
900810  IRQ  ARB  094  CALL FOR 
900810  USA  IRQ  160  WARN 
900810  USA  IRQ  051  PROMISE POLICY 
900810  USA  IRQ  223  MIL ENGAGEME 

For instance, the last event (dated 900810; i. e., August 10th 1990) codes a 
military action (WEIS event type 223), initiated by actor USA and directed to 
the Iraq (IRQ). The text at the end of the line (MIL ENGAGEMENT) is a textual 
description of the event type (which is not needed in the analysis, since it is 
implied by the event type). In total there are more than 100 different types of 
events. 

The WEIS event types are mapped to an established scale whose entries 
are referred to as Goldstein weights (Goldstein 1992) and indicate the level 
of cooperativeness (if positive) or hostility (if negative). Examples of weights 
associated with specific types are the following. 
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072 EXTEND MIL AID  8.3 
054  ASSURE  2.8 
160  WARN  -3.0 
173  SPECIF THREAT  -7.0 
223  MIL ENGAGEMENT  -10.0 

Extending military aid is considered a highly cooperative action (weight 
equal to 8.3), whereas warnings are mildly hostile (w = –3.0), specific threats 
much more severe (w = –7.0), and military engagements are the most hostile 
type of events (w = –10.0). 

It must be kept in mind that using the KEDS data entails some problems 
for the analysis. Since the data are generated on the basis of news reports 
we do not, strictly speaking, estimate the tendency to interact but rather the 
likelihood of interaction being reported in the news. We believe that, given 
that the interpretation takes account of this bias, the results still are meaningful. 

Interaction among political actors is not only influenced by previous 
interaction but also by additional actor or dyad characteristics such as whether 
they share a common border or are members in the same military alliance. 
To control for different actor or dyad characteristics we rely on data from 
a frequently-used model of international militarized disputes (Oneal and 
Russett 2005). We will include several realist and liberal covariates, such 
as geographic adjacency, capability distribution, the countries’ democracy 
scores and trade flows; however, we will pay special attention to the effect 
of military alliances. Research has not yet established whether military 
alliances reduce or increase the likelihood that a militarized dispute breaks 
out in a dyad (Bueno de Mesquita 1981; Bremer 1992; Oneal and Russett 
2005; Kimball 2006). We will contribute to this debate by examining 
whether two countries that share an alliance membership generally interact 
more frequently, and if so, whether they behave more cooperatively or in 
a more hostile way towards each other. Including alliance membership as 
an explanatory variable is also quite illustrative from a methodological 
point of view. As it turns out, the positive influence of joint alliances on the 
conditional event type can be consistently validated–independent of which 
control variables we used. On the other hand, the positive relationship 
between alliances and the frequency of dyadic interaction that can be 
validated in a bivariate model diminishes, or even gets reversed, if we 
control for network dependencies and other covariates. This illustrates that 
the conditional event type is conceptually different from the absolute level 
of (friendly or hostile) interaction and emphasizes the need to control for 
network effects when testing associations among dyadic variables. 
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While the main contribution of this work is methodological, we present and 
test several hypotheses to illustrate and exemplify how our newly-proposed 
model can be applied in political science research and how it performs 
on empirical network event data. We have chosen the below-mentioned 
hypotheses since they illustrate different aspects of our model. Structural 
balance theory explicitly predicts that dyads are dependent. More precisely, 
interaction on a dyad (a, b) is claimed to depend on previous interaction on 
(a, c) and (b, c), for any third actor c. On the other hand, the hypotheses about 
the effect of alliances (H

5
 and H

7
) claim that interaction on (a, b) depends 

on a binary indicator on the same dyad. Although H
5
 and H

7
, thus, make 

no statement about dependencies among different dyads, we will see that 
controlling for network effects leads to different findings for some of these 
hypotheses. Thus, even if a particular research question is not about network 
dependencies these should nevertheless be tested and, if present, be included 
in the model. 

Structural balance theory explains the type of events from a to b by the type 
of indirect relations via a third actor. More detailed, SBT predicts that actors 
behave: 

H
1
 cooperatively towards the friends of their friends; 

H
2
 hostile towards the friends of their enemies; 

H
3
 hostile towards the enemies of their friends; 

H
4 
cooperatively towards the enemies of their enemies. 

Drawing on previous results on the effect of alliances, we hypothesize that 
events among allies are rather cooperative than hostile. Thus: 

H
5
 allies interact more cooperatively than non-allies. As hypotheses about 

event frequencies, we test the following two: 

H
6
 Transitivity of activity: the more actors a and b interacted (cooperatively 

or hostile) with common others, the higher the event rate on the dyad (a, b). 

Finally, we hypothesize that alliances are only established among countries 
that, loosely speaking, have something to do with each other. Thus: 

H
7
 if actor a and b are allies then the event rate on the dyad (a, b) is higher 

than if a and b are not allies. 

Note that the models we use later to test these hypotheses control for many 
more network dependencies which are, however, not of central interest for 
this paper and therefore not formulated as explicit hypotheses. 
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3 SPECIFICATION OF CONDITIONAL NETWORK EVENT 
TYPE MODELS 

We assume that the occurrence of events and the type of events are 
dependent on previous events on the same or on other dyads. It is the goal of 
the analyst to test and/or control for such network dependencies and thereby 
to establish rules that govern the behavior of actors. As an example, if actors 
a and b both had frequent hostile interaction with common third actors (i. e., if 
they are enemies of enemies) then this may increase the probability that a and 
b interact cooperatively with each other. The model introduced in this section 
can be applied to perform statistical tests for such hypotheses. Note that a 
preliminary version of this model has been proposed in Brandes et al. (2009). 

3.1 Model Overview 

To model the probability of an observed sequence of events E = (e
1
,...,e

N
), 

we assume that each event e
i
 is only dependent on events that happened 

earlier. To obtain a tractable model, we further assume that this dependence 
is completely captured by a dynamic network encoding the essential aspects 
of past interaction among actors. The past events (i. e., the events that happen 
before e

i
) determine the event network G

ei
 and, given the state of G

ei
, the next 

event e
i
 is assumed to be conditionally independent of all other events. The 

probability of e
i
 given G

ei
 is modeled parametrically so that the parameter 

estimates give the information which properties of G
ei
 increase/decrease 

the frequency of events and which properties of the network influence the 
conditional event type. 

More formally, let E =(e
1
,...,e

N
) be a sequence of events and let 
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more network dependencies which are, however, not of central interest for
this paper and therefore not formulated as explicit hypotheses.
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θ = (θ(λ); θ(µ)) = (θ
(λ)
1 , . . . , θ

(λ)
kλ

; θ
(µ)
1 , . . . , θ

(µ)
kµ

)

be the parameters of the model, where the rate parameters θ(λ) stochastically
determine the event frequency and the type parameters θ(µ) stochastically

9
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1
,...,e

N
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determine the event type, as we shall see later. The probability density
function for an event sequence E = (e1, . . . , eN) is

f(E; θ) = f(e1|Ge1 ; θ) · f(e2|Ge2 ; θ) · . . . · f(eN |GeN ; θ) . (1)

Here f(ei|Gei ; θ) denotes the conditional probability density for the event ei,
given the network of past events Gei .

For a given observed sequence of events E = (e1, . . . , eN) the function
f(E; θ) is the likelihood function when considered as a function of θ and hy-
pothesis testing is operationalized by the maximum likelihood estimates, i. e.,
the values θ̂ that maximize f(E; θ) (see Young and Smith 2005). The follow-
ing sections provide details about the different components of our model.

3.2 Input Data

The input data we consider consists of sequences of dyadic, typed events
E = (e1, . . . , eN). A (dyadic, typed) event e ∈ E is defined to be a tuple
e = (ae, be, we, te), where:

• ae is the source (initiator) of e;

• be is the target (addressee) of e;

• we ∈ R is the type, coding the quality of the event e; and

• te is the time when e happens.

The source and the target of events are termed actors. Actors are, e. g.,
people, groups of people, organizations, or countries.

Time is given on some scale, e. g., by second, minute, hour, day, month,
or year. In the KEDS data time is given by the day. Several events may
happen during the same time unit. The event sequence is assumed to be in
non-decreasing order with respect to time. The order of events that happen
within the same time unit is considered as undefined. We note that for our
analysis we do not need the absolute time t but rather the time difference
∆t between events.

The type we of an event e (also referred to as its weight) characterizes
the quality of e. In the exemplary application of this paper the weight we

of an event e is a real number from the interval [−1, 1] obtained by dividing
the Goldstein weights of KEDS events by ten. A positive weight indicates a

10
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pothesis testing is operationalized by the maximum likelihood estimates, i. e.,
the values θ̂ that maximize f(E; θ) (see Young and Smith 2005). The follow-
ing sections provide details about the different components of our model.

3.2 Input Data

The input data we consider consists of sequences of dyadic, typed events
E = (e1, . . . , eN). A (dyadic, typed) event e ∈ E is defined to be a tuple
e = (ae, be, we, te), where:

• ae is the source (initiator) of e;

• be is the target (addressee) of e;

• we ∈ R is the type, coding the quality of the event e; and

• te is the time when e happens.

The source and the target of events are termed actors. Actors are, e. g.,
people, groups of people, organizations, or countries.

Time is given on some scale, e. g., by second, minute, hour, day, month,
or year. In the KEDS data time is given by the day. Several events may
happen during the same time unit. The event sequence is assumed to be in
non-decreasing order with respect to time. The order of events that happen
within the same time unit is considered as undefined. We note that for our
analysis we do not need the absolute time t but rather the time difference
∆t between events.

The type we of an event e (also referred to as its weight) characterizes
the quality of e. In the exemplary application of this paper the weight we

of an event e is a real number from the interval [−1, 1] obtained by dividing
the Goldstein weights of KEDS events by ten. A positive weight indicates a
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e
 is the source (initiator) of e; 

• b
e
 is the target (addressee) of e; 

• w
e 
e R is the type, coding the quality of the event e; and 

• t
e
 is the time when e happens. 

The source and the target of events are termed actors. Actors are, e. g., 
people, groups of people, organizations, or countries. 

Time is given on some scale, e. g., by second, minute, hour, day, month, or 
year. In the KEDS data time is given by the day. Several events may happen 
during the same time unit. The event sequence is assumed to be in non-
decreasing order with respect to time. The order of events that happen within 
the same time unit is considered as undefined. We note that for our analysis 
we do not need the absolute time t but rather the time difference Dt between 
events. 

The type w
e
 of an event e (also referred to as its weight) characterizes the 

quality of e. In the exemplary application of this paper the weight w
e
 of an 

event e is a real number from the interval [–1, 1] obtained by dividing the 
Goldstein weights of KEDS events by ten. A positive weight indicates a 
cooperative event, a negative weight a hostile event, and the absolute value 
of event weights measures the magnitude of cooperativeness or hostility, 
respectively (so that this scale has a non-arbitrary zero indicating neutral 
events). In other applications, events may have other types, e. g., binary, 
multinomial, ordered multinomial, or event types might be multidimensional. 
While our model could be extended to these more general types of events this 
is not considered in this paper. 
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3.3 Explanatory Variable: The Network of Past Interaction 

Given a sequence of events E =(e
1
,...,e

N
) and a specific timepoint t (denoting 

the current time), the event network at time t (referred to as network of past 
events if t is implied) is a weighted graph G

t
 =(A; W

t
) defined as a function 

of the set of past events E
<t

 = {e e E ; t
e
 <t}; i. e., the set of events that 

happen before t. Furthermore, the event network might encode (potentially 
time-dependent) actor, dyad, or network covariates that are not a function of 
previous events but that give additional information. For instance, in the case 
of political networks, such covariates might be the gross domestic product of 
a country (as an example of an actor covariate) or the geographical distance 
between countries (as an example of a dyad covariate). In our application 
these covariates are given as yearly data. 

The components of G
t
 =(A; W

t
) are explained in the following. The set A 

consists of the actors that are involved in any event (thus we keep the set of 
actors fixed over time) and W

t 
is a vector-valued function mapping each dyad 

(a, b) to a value that characterizes the essential aspects of how a interacted 
with b in the past, i. e., before t. More formally, let D = {(i, j); i, j e A, i ≠ j} 
be the set of all dyads. Then W

t  
is a function 

cooperative event, a negative weight a hostile event, and the absolute value of
event weights measures the magnitude of cooperativeness or hostility, respec-
tively (so that this scale has a non-arbitrary zero indicating neutral events).
In other applications, events may have other types, e. g., binary, multinomial,
ordered multinomial, or event types might be multidimensional. While our
model could be extended to these more general types of events this is not
considered in this paper.

3.3 Explanatory Variable: The Network of Past Inter-
action

Given a sequence of events E = (e1, . . . , eN) and a specific timepoint t (de-
noting the current time), the event network at time t (referred to as network
of past events if t is implied) is a weighted graph Gt = (A;Wt) defined as
a function of the set of past events E<t = {e ∈ E ; te < t}; i. e., the set of
events that happen before t. Furthermore, the event network might encode
(potentially time-dependent) actor, dyad, or network covariates that are not
a function of previous events but that give additional information. For in-
stance, in the case of political networks, such covariates might be the gross
domestic product of a country (as an example of an actor covariate) or the
geographical distance between countries (as an example of a dyad covariate).
In our application these covariates are given as yearly data.

The components of Gt = (A;Wt) are explained in the following. The set
A consists of the actors that are involved in any event (thus we keep the set of
actors fixed over time) and Wt is a vector-valued function mapping each dyad
(a, b) to a value that characterizes the essential aspects of how a interacted
with b in the past, i. e., before t. More formally, let D = {(i, j) ; i, j ∈ A, i �=
j} be the set of all dyads. Then Wt is a function

Wt:D → Rd; (a, b) �→ (Wt,1(a, b), . . . ,Wt,d(a, b)) ,

where Wt,i(a, b) ∈ R denotes the real value in the i’th dimension, for i =
1, . . . , d.

In our concrete application, the network of past events Gt = (A; w+
t , w

−
t )

is a weighted network with a two-dimensional weight functionWt = (w+
t , w

−
t ),

encoding past cooperative and past hostile interaction, respectively.10 The

10By a slight abuse of notation we denote the weight on a dyad by the same letter, namely
w, as the weight of an event; this should not cause any confusion.
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encoding past cooperative and past hostile interaction, respectively.10 The 
value of cooperative/hostile interaction of a particular dyad (a, b) increases 
whenever a initiates a cooperative/hostile event e targeted at b. When the 
difference between the current time t and the event time t

e
 increases, the 

influence of e diminishes. The latter property is motivated by the assumption 
that actors forget (or forgive) cooperative and hostile actions. Assuming 
that the rate of forgetfulness or forgiveness is only dependent on the current 
weight, we obtain an exponentially decreasing influence of each event when 
time increases. More precisely, let T

1/2
 e R

>0
 be a given positive number 

10  By a slight abuse of notation we denote the weight on a dyad by the same letter, namely w, as 
the weight of an event; this should not cause any confusion.
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denoting the halflife of the influence of events. Then, the function w
t
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R≥0
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denoting the halflife of the influence of events. Then, the function w+

t :D →
R≥0 is defined by

w+
t (i, j) =

∑
e:ae=i, be=j,
we>0, te<t

|we| · exp
(
−(t− te) ·

ln(2)

T1/2

)
· ln(2)
T1/2

and the function w−
t :D → R≥0 is defined by11

w−
t (i, j) =

∑
e:ae=i, be=j,
we<0, te<t

|we| · exp
(
−(t− te) ·

ln(2)

T1/2

)
· ln(2)
T1/2

Thus, the value w+
t (i, j) is defined as a function of all weights of events

e = (ae, be, we, te) that involve i as source (ae = i) and j as target (be = j),
that happen before the current time t (te < t), and that have positive weight
(we > 0). Similarly, w−

t (i, j) is the sum over events with negative weight
(we < 0). How strongly an event e is counted at time t depends on the time-
difference t−te. Each time this difference increases by T1/2 the factor for we is
halved. The choice of T1/2 is dependent on whether the analyst is interested
in short-term or long-term responses to previous events. Estimation of T1/2

from empirical data is possible, but not considered in this paper. The last
factor ln(2)

T1/2
is used to give w±

t (i, j) the interpretation of “aggregate weight

per time unit.” This interpretation is quite accurate if time units are small
and only an approximation if time is given on a coarse scale.

Higher dimensional weight functions might additionally encode, e. g., the
conflict increase defined as the difference of the current value of w−

t minus
its value ∆t time units in the past, i. e., w−

t − w−
t−∆t. Whether the level of

conflict is currently increasing or decreasing might have a significant effect

11Note that w− also maps to the non-negative numbers, since the absolute value |we| is
taken.
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is currently increasing or decreasing might have a significant effect on future 
events–additional to the absolute level of conflict. The increase of conflict is, 
however, not used as an explanatory variable in this paper. 

If e is an event in E, we sometimes write G
e
 for G

te
. Note that G

e
 is only 

dependent on events that happen earlier than e (and not on events that happen 
in the same time unit as e). 

3.4 Dependent Variable: The Next Event 

In this section we model the probability density f(e|G
e
;θ); i. e., the probability 

density of an event e dependent on the event network G
e
, compare Eq. (1). 

11  Note that w– also maps to the non-negative numbers, since the absolute value |w
e 
| is taken.
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The first step is the decomposition of the probability density of events into 
a rate component and a conditional type component. Let e =(a

e
,b

e
,w

e
,t

e
) be 

an event in the observed sequence E. The probability density of e, given the 
network of past events G

e
, is decomposed into two factors: 

on future events—additional to the absolute level of conflict. The increase
of conflict is, however, not used as an explanatory variable in this paper.

If e is an event in E, we sometimes write Ge for Gte . Note that Ge is
only dependent on events that happen earlier than e (and not on events that
happen in the same time unit as e).

3.4 Dependent Variable: The Next Event

In this section we model the probability density f(e|Ge; θ); i. e., the prob-
ability density of an event e dependent on the event network Ge, compare
Eq. (1).

The first step is the decomposition of the probability density of events into
a rate component and a conditional type component. Let e = (ae, be, we, te)
be an event in the observed sequence E. The probability density of e, given
the network of past events Ge, is decomposed into two factors:

f(e|Ge; θ) = fλ(ae, be, te|Ge; θ
(λ)) · fµ(we|ae, be, te;Ge; θ

(µ)) . (2)

Here fλ(ae, be, te|Ge; θ
(λ)), called the rate component, is the probability den-

sity that the next event happens at time te and involves ae as source and
be as target. Likewise, fµ(we|ae, be, te;Ge; θ

(µ)), called the conditional type
component, is the conditional probability density that event e has type we,
given that the next event involves ae as source, be as target, and happens at
time te. Defining

fλ(E; θ(λ)) =
∏
e∈E

fλ(ae, be, te|Ge; θ
(λ))

and
fµ(E; θ(µ)) =

∏
e∈E

fµ(we|ae, be, te;Ge; θ
(µ))

we can decompose the joint probability density into

f(E; θ) = fλ(E; θ(λ)) · fµ(E; θ(µ)) , (3)

where fλ is the rate component of the joint probability density, modeling the
occurrence of events, and fµ is the conditional type component, modeling
the distribution of event types.

Despite its simplicity, Eq. (2) is a key concept in the definition of condi-
tional event type models. The main decision here is that a set of parameters

13
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Here, the expected event weight µab = µab(Ge; θ
(µ)) is postulated to be de-

pendent on the parameters (θ
(µ)
1 , . . . , θ

(µ)
kµ

) and the values of various statistics

sh(Ge; a, b), h = 1, . . . , kµ that characterize the network around a and b (see
Sect. 3.5). More precisely, the expected event weight is modeled as a function

µab(Ge; θ
(µ)) =

kµ∑
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θ
(µ)
h · sh(Ge; a, b) . (5)

The maximum likelihood estimates of the weight parameters θ̂
(µ)
h reveal

dependencies between characteristics of the network and later observed event
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The maximum likelihood estimates of the weight parameters θˆh
(µ) reveal 

dependencies between characteristics of the network and later observed event 
weights. For instance, if a particular statistic s

h
(G

e
; a, b) encodes how much b 

attacked a in the past, then a (significantly) negative value for the associated 
parameter θˆh

(µ) would imply that actors show a tendency to initiate hostile 
events towards attackers. 

The modeling of the event frequency is slightly more complicated, since not 
the frequency itself but rather the waiting time between events is observed. 
However, estimating event frequencies from observed time-to-event data is 
a common task in lifetime analysis (Lawless 2003) from where we get the 
necessary methodology. 
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A key concept in modeling event times is the so-called hazard function (also 
called intensity function, or rate function). To simplify notation we assume 
here that event times are known exactly and that at any point in time there can 
happen at most one event; the likelihood function for the occurrence of events 
is later derived without this assumption (i. e., where time is only known up to 
some fixed precision and where more than one event may happen during the 
same time interval). 
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not the frequency itself but rather the waiting time between events is ob-
served. However, estimating event frequencies from observed time-to-event
data is a common task in lifetime analysis (Lawless 2003) from where we get
the necessary methodology.

A key concept in modeling event times is the so-called hazard function
(also called intensity function, or rate function). To simplify notation we
assume here that event times are known exactly and that at any point in
time there can happen at most one event; the likelihood function for the
occurrence of events is later derived without this assumption (i. e., where
time is only known up to some fixed precision and where more than one
event may happen during the same time interval).

Let (a, b) ∈ D be any dyad in the network, let t denote a point in time,
and let Nab(t), defined by

Nab(t) = |{e ∈ E ; ae = a, be = b, te ≤ t}|,

denote the number of events that happen on the dyad (a, b) before or at time
t. The function λab mapping a time point t to

λab(t) = lim
∆t→0

E[Nab(t+∆t)−Nab(t) |Gt]

∆t
(6)

is called the hazard function for the dyad (a, b). (Here, the function E[·]
denotes the expectation of the argument.) Intuitively, the hazard function
can be interpreted as the expected number of events in a time interval of
length one. Thus, λab(t) is also referred to as the event rate on the dyad
(a, b) at time t. Note that, if at most one event can happen on (a, b), this
definition is equivalent to the more usual definition of the hazard function as
being the conditional probability density that the event happens at time t,
given that it did not happen before (Lawless 2003). The definition given in
Eq. 6 is preferable in our case, since it generalizes to repeated events.

We assume that the hazard is a function of the current state of the network
but that this function is time-invariant.12 Similar to the event type, the event

12For more general hazard functions that have an explicit time dependency see Lawless
(2003).
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rate λab(Gt; θ
(λ)) is dependent on the rate parameters θ(λ) = (θ

(λ)
1 , . . . , θ

(λ)
kλ

)
and the values of various statistics sh(Gt; a, b), h = 1, . . . , kλ that characterize
the network around a and b. More precisely, the rate is specified to be a
function

λab(t) = λab(Gt; θ
(λ)) = exp

(
kλ∑
h=1

θ
(λ)
h · sh(Gt; a, b)

)
. (7)

The exponential link function form ensures a positive event rate.
The maximum likelihood estimates for the rate parameters θ̂

(λ)
h reveal de-

pendencies between the network of past events and the frequency of future
events. For instance, if a particular statistic sh(Gt; a, b) encodes how much b
interacted with a in the past, then a significantly positive associated param-
eter θ̂

(λ)
h would indicate that actors reciprocate activity. The rate parameters

do not reveal whether responses are positive (more cooperation), neutral, or
negative (more hostility).

The hazard function already determines the likelihood function for the
occurrence of events which we derive next. We have to take into account that
we have a fixed time precision (e. g., a day in our illustrative application) and
that several events on the same or on different dyads may happen during the
interval of timepoints that get the same timestamp. In the following, let the
expression time interval always refer to an interval of length one consisting
of the timepoints with the same timestamp, e. g., all timepoints within one
day. Henceforward, we assume for sake of simplicity that the event network
does not get updated during a time interval.

Let t denote a particular time interval and let, for any dyad (i, j) ∈ D,

nij(t) = |{e ∈ E ; ae = i, be = j, te = t}|,

denote the number of events that happen on (i, j) in the interval t. The
use of time intervals implies that we go from a continuous-time model to a
discrete-time model, where the number of events in interval t has a Poisson
distribution with parameter λij(t); this is also the expected number of events
in this time interval. For any dyad (i, j) the probability that exactly nij(t)
events happen on (i, j) in the interval t is

λij(t)
nij(t) exp(−λij(t))

nij(t)!
,
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The exponential link function form ensures a positive event rate. 

12 For more general hazard functions that have an explicit time dependency see Lawless (2003).
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denotes the first and t

N
 the last timestamp, the 

rate component of the joint probability density is13see, e. g., Lawless (2003). If t1 denotes the first and tN the last timestamp,
the rate component of the joint probability density is13

fλ(E; θ(λ)) =

tN∏
t=t1

∏
ij∈D

λij(t)
nij(t) exp(−λij(t))

nij(t)!
. (8)

Taking into account that in a given time interval there may be many
dyads on which no event happens, and letting Dact(t) denote the set of active
dyads at time t, i. e., dyads on which at least one event happens, we can
rewrite this as

fλ(E; θ(λ)) =

tN∏
t=t1


 ∏

ij∈Dact(t)

λij(t)
nij(t)

nij(t)!


 · exp

(
−

∑
ij∈D

λij(t)

)
. (9)

Note that the second product is over all dyads that are active at time t, while
the sum is over all dyads, including inactive ones. If it is known that during
a time interval t there cannot be an event on some dyads, then these have
to be left out from the summation. Thereby one can, for instance, address
situations where the set of actors changes over time: if actor a is not in the
network at time t, then all dyads having a as source or as target have to be
left out from the summation in the normalizing constant e−

∑
ij∈D λij(t).

3.5 Network Statistics

The general model outlined so far can be applied to test many hypotheses
concerning the interplay between network structure and the frequency and
quality of dyadic events. The specialization is done by using various statistics
in Eqs. (5) and (7). The particular statistics that we define below are similar
to those of previous statistical models for cross-sectional (Robins et al. 2007)
or longitudinal networks (Snijders 2005). The statistics are illustrated in
Table 1.

[Table 1 about here.]
Note that some of these statistics are used to test the hypotheses on

structural balance theory, while others mostly serve to control for certain
trivial regularities (e. g., inertia). A control statistic that always has to

13Note that, if at most one event happened in any time interval, Eq. (8) is indeed identical
to Eq. (2) in Butts (2008, p.163), although it is arranged in a different way.
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13  Note that, if at most one event happened in any time interval, Eq. (8) is indeed identical to Eq. 
(2) in Butts (2008, p.163), although it is arranged in a different way.
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constant (G

t
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rate). The function constant (G

t
; a, b), as well as the ones whose definition 

follows, correspond to the statistics s
h
 (G

t
; a, b) in Eqs. (5) as well as (7). First 

we propose some further statistics for use in Eq. (5) to specify the distribution 
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see, e. g., Lawless (2003). If t1 denotes the first and tN the last timestamp,
the rate component of the joint probability density is13
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tN∏
t=t1

∏
ij∈D

λij(t)
nij(t) exp(−λij(t))

nij(t)!
. (8)
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
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−

∑
ij∈D

λij(t)
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The most simple model would assume that actors just continue to act in 
the way they did in the past. For instance, if actor a initiated many hostilities 
targeted at actor b, the dyad (a, b) is likely to be a hostile one in the future. 
This effect is controlled for by the two statistics capturing the inertia of 
positive respectively negative events, defined by 

inertia+(G
t
; a, b) = w

t
+(a, b) inertia–(G

t
; a, b) = w

t 
–(a, b) . 

The type parameter associated with inertia+ is expected to be positive 
(events from a to b are more cooperative if a cooperated with b in the past) 

Table 1: Illustration of some statistics explaining the tie from actor a towards
actor b at time t. A ± sign indicates that there is a version for positive and
for negative weights. The symmetric positve/negative weight on a dyad i, j
is defined by w±

t,sy(i, j) = w±
t (i, j) + w±

t (j, i). Dashed lines indicate negative
ties.

name formula a b depends on

inertia± w±
t (a, b) a b

reciprocity± w±
t (b, a) a b

friendOfFriend
√∑

i∈A w+
t,sy(a, i) · w+

t,sy(i, b)
a bi1

i2

friendOfEnemy
√∑

i∈A w−
t,sy(a, i) · w+

t,sy(i, b)
a bi1

i2

enemyOfFriend
√∑

i∈A w+
t,sy(a, i) · w−

t,sy(i, b)
a bi1

i2

enemyOfEnemy
√∑

i∈A w−
t,sy(a, i) · w−

t,sy(i, b)
a bi1

i2

activitySource±
∑

i∈A w±
t (a, i)

a b

i1

i2

i3

popularityTarget±
∑

i∈A w±
t (i, b)

a b

i1

i2

i3

1
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and the parameter associated with inertia– is expected to be negative 
(events from a to b are more hostile if a fought b in the past). 

A non-trivial, but very reasonable, network effect is that actors reciprocate, 
i. e., actor a adapts its events towards actor b in accordance to how b treated 
a in the past. This is captured for positive and negative events by the two 
statistics 

reciprocity+(G
t
; a, b)= w

t 
+(b, a) reciprocity–(G

t
; a, b)= w

t
–(b, a). 

A positive estimate for the type parameter associated with reciprocity+ 

would imply that actors reward cooperation; a negative estimate for the type 
parameter associated with reciprocity– would imply that actors retaliate 
when receiving hostilities. 

Structural balance theory predicts that the relation of two actors a and b is 
dependent on whether they have common friends or foes. In the following we 
take it as an indication of friendship if two actors cooperate (in either direction) 
and as an indicator that they are enemies if they exchange hostilities. Let 
w

t
+,

sy
(i, j)= w

t
+(i, j)+ w

t
+(j, i) denote the symmetrized positive weight on adyad 

(i, j) and let w
t
–,

sy
(i, j)= w

t
–(i, j)+ w

t
–(j, i) denote  the symmetrized negative 

weight. To test the four hypotheses of structural balance theory, we define 
four statistics measuring to what extent b is with respect to a a friend of a 
friend, a friend of an enemy, an enemy of a friend, and an enemy of an enemy, 
respectively. 
respect to a a friend of a friend, a friend of an enemy, an enemy of a friend,
and an enemy of an enemy, respectively.

friendOfFriend(Gt; a, b) =

√∑
i∈A

w+
t,sy(a, i) · w+

t,sy(i, b)

friendOfEnemy(Gt; a, b) =

√∑
i∈A

w−
t,sy(a, i) · w+

t,sy(i, b)

enemyOfFriend(Gt; a, b) =

√∑
i∈A

w+
t,sy(a, i) · w−

t,sy(i, b)

enemyOfEnemy(Gt; a, b) =

√∑
i∈A

w−
t,sy(a, i) · w−

t,sy(i, b)

The square root expresses the assumption that a second (third, fourth, etc.)
actor who is an enemy of a and a friend of b has a decreasing marginal effect
on how strongly a perceives b as a friend of an enemy (compare Snijders
et al. 2010). According to the hypotheses developed before, the type param-
eters associated with friendOfFriend and enemyOfEnemy are predicted to
be positive and those associated with friendOfEnemy and enemyOfFriend

are predicted to be negative.14

As a matter of fact, some actors are more active than others, some do
rather initiate hostile events (aggressive actors), and others are more coop-
erative. Likewise, some actors are typical targets of hostilities, while others
tend to experience cooperation. To control for such differences in actors’
network positions or roles, we introduce a set of statistics dependent on the
degree of actors. These statistics vary in three dimensions: (1) outdegree
(activity) vs. indegree (popularity); (2) positive vs. negative weight; and, (3)
whether we want to analyze the influence of these degree statistics on the
initiator of events (source) or on the addressee of events (target). Together

14Clearly, by symmetrizing the friend and enemy relations we lose some information, since
the direction of ties might cause different behavior. For instance, it might be possible
that actors fight those who attack their friends but are indifferent to those who are
attacked by their friends. If we distinguish all combinations of signs and directions of
the two ties that indirectly relate a with b, we obtain 16 statistics for structural balance.
This refinement is, however, not considered in this paper.
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al. 2010). According to the hypotheses developed before, the type parameters 
associated with friendOfFriend and enemyOfEnemy are predicted to be 
positive and those associated with friendOfEnemy and enemyOfFriend 
are predicted to be negative.14

As a matter of fact, some actors are more active than others, some do rather 
initiate hostile events (aggressive actors), and others are more cooperative. 
Likewise, some actors are typical targets of hostilities, while others tend to 
experience cooperation. To control for such differences in actors’ network 
positions or roles, we introduce a set of statistics dependent on the degree 
of actors. These statistics vary in three dimensions: (1) outdegree (activity) 
vs. indegree (popularity); (2) positive vs. negative weight; and, (3) whether 
we want to analyze the influence of these degree statistics on the initiator of 
events (source) or on the addressee of events (target). Together we obtain 
eight different statistics; two of them are defined below, the others are implied 
by analogy. The activity of the source actor with respect to positive events is 
defined to be 

we obtain eight different statistics; two of them are defined below, the oth-
ers are implied by analogy. The activity of the source actor with respect to
positive events is defined to be

activitySource+(Gt; a, b) =
∑
i∈A

w+
t (a, i) ,

while the popularity of the target actor with respect to negative events is
defined to be

popularityTarget−(Gt; a, b) =
∑
i∈A

w−
t (i, b) .

For instance, a positive estimate for the type parameter associated with
activitySource+ would imply that actors a who initiate a lot of cooperation
(towards any actor i), are more likely to cooperate with (rather than fight)
the particular actor b who is the target of the next event.

Constant or slowly changing actor and dyad characteristics may addi-
tionally or alternatively explain the behavior of political actors. The fol-
lowing statistics characterize a dyad (a, b) by various covariates. The statis-
tics are taken from a standard model for non-directed dyad analysis used
in the study of international relations (Oneal and Russett 2005). The bi-
nary variable allies(Gt; a, b) is one if and only if a and b have at least
one common joint alliance membership. Hypothesis H5 predicts that the
conditional type parameter associated with allies is positive. Statistic
lnCapRatio(Gt; a, b) is the logarithmized ratio of the capability score of the
more powerful actor divided by the score of the less powerful actor.15 Pre-
vious results have shown that a preponderance of national capabilities is
related to less conflict within the dyad (Hegre 2008). The binary statistic
minorPowers(Gt; a, b) is one if and only if neither a nor b is a major power.
The polity score of the less democratic actor in the dyad gives the value of
the statistic polityWeakLink(Gt; a, b). Since previous results have reported
that democracies show a tendency to not fight each other (Russett and Oneal
2001), we expect a positive type parameter associated with polityWeakLink.
The binary statistic contiguity(Gt; a, b) is one if and only if a and b share
a land border or a sea border less than 400 miles long and the variable
lnDistance(Gt; a, b) is the logarithmized distance between the capitals of a

15The capability score of a country is a composite measure taking into account, among
other things, demographic, economic, and military strength.
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For instance, a positive estimate for the type parameter associated with 
activitySource+ would imply that actors a who initiate a lot of cooperation 
(towards any actor i), are more likely to cooperate with (rather than fight) the 
particular actor b who is the target of the next event. 

Constant or slowly changing actor and dyad characteristics may additionally 
or alternatively explain the behavior of political actors. The following statistics 
characterize a dyad (a, b) by various covariates. The statistics are taken from a 
standard model for non-directed dyad analysis used in the study of international 
relations (Oneal and Russett 2005). The binary variable allies(G

t
; a, b) is 

one if and only if a and b have at least one common joint alliance membership. 
Hypothesis H

5
 predicts that the conditional type parameter associated with 

14  Clearly, by symmetrizing the friend and enemy relations we lose some information, since 
the direction of ties might cause different behavior. For instance, it might be possible that 
actors fight those who attack their friends but are indiferent to those who are attacked by their 
friends. If we distinguish all combinations of signs and directions of the two ties that indirectly 
relate a with b, we obtain 16 statistics for structural balance. This refinement is, however, not 
considered in this paper.
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allies is positive. Statistic lnCapRatio(G
t
; a, b) is the logarithmized ratio 

of the capability score of the more powerful actor divided by the score of the 
less powerful actor.15 Previous results have shown that a preponderance of 
national capabilities is related to less conflict within the dyad (Hegre 2008). 
The binary statistic minorPowers(G

t
; a, b) is one if and only if neither a nor 

b is a major power. The polity score of the less democratic actor in the dyad 
gives the value of the statistic polityWeakLink(G

t
; a, b). Since previous 

results have reported that democracies show a tendency to not fight each other 
(Russett and Oneal 2001), we expect a positive type parameter associated 
with polityWeakLink. The binary statistic contiguity(G

t
; a, b) is one if 

and only if a and b share a land border or a sea border less than 400 miles long 
and the variable lnDistance(G

t
; a, b) is the logarithmized distance between 

the capitals of a and b. The statistic lnTrade(G
t
; a, b) is the logarithm of the 

average of trade going from a to b and from b to a and lnJointIGO(G
t
; a, 

b) is the logarithmized number of joint memberships in intergovernmental 
organizations of a and b. 

In principle, the statistics defined above can also be taken for the specification 
of the event rate in Eq. (7). However, structural balance theory makes no 
predictions about whether actors interact more or less frequently with, say, the 
friends of their enemies; it is just predicted that the tie is likely to be a hostile 
one. For this reason we argue that the rate is better specified by statistics that 
ignore the sign of previous interaction as defined in the following, leaving out 
the argument (G

t
; a, b).

 
 inertia  =  inertia+ + inertia–

 reciprocity  =  reciprocity+ + reciprocity–

 triangle  =  friendOfFriend + friendOfEnemy
   +enemyOfFriend + enemyOfEnemy
 activitySource  =  activitySource+ + activitySource–

The definition of the statistics activityTarget, popularitySource, 
and popularityTarget is analogous to activitySource. The rate 
parameters associated with these statistics reveal dependencies between 
particular aspects of the network of past events and future event frequencies. 
For instance, a positive rate parameter associated with reciprocity would 
imply that if b interacted a lot with a (positively or negatively) then the 
current event frequency on the dyad (a, b) is typically higher than without 
this precondition; a negative rate parameter points to a decreased event rate. 

15  The capability score of a country is a composite measure taking into account, among other 
things, demographic, economic, and military strength.
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3.6 Parameter Estimation 

The maximization of the log-likelihood of the type parameters, see Eq. (4), 
is very efficient and can be done by simply solving the usual OLS system of 
equations. The maximization of the log-likelihood of the rate parameters (see 
Eq. (8)) can be done numerically, e. g., by using the established NewtoN-
RaphsoN algorithm. The computation of the rate parameters is much more 
time-consuming since the normalization constant in Eq. (9) contains a sum 
over all pairs of actors. The computation can be speeded up by approximating 
this sum via sampling over a sffiucient number of pairs; compare Butts 
(2008). The results in this paper, however, are computed without such an 
approximation. 

4 RESULTS AND DISCUSSION 

In this section we report and discuss the estimated parameters on the Gulf 
network, restricted to state actors. The half life parameter T

1/2
 is set to 30 days. 

4.1 Conditional Type Parameters 

Table 2 shows the estimated conditional type parameters for three models, 
the first built from the 16 signed network effects, the second built from the 
covariate statistics, and finally a combined model which includes network and 
covariate effects. The log-likelihood of the null model M

0
 (no effects except 

the constant offset) is –143,964, its BIC is 287,940, its AIC is 287,930. The 
maximized likelihood and information criteria for the other models are listed 
in Table 2. With respect to the information criteria the network model is better 
than the covariate model, but the combination of networks and covariates 
yields a strong further model improvement.16

16  Note that the models including covariates are estimated using a slightly smaller set of events 
due to dropping events with missing values; thus the network-only model can only be 
compared with the null model and the covariate model only with the joint model, according 
to the information criteria.
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Table 2 Estimated conditional type prameters and standard errors (in brackets)

The estimated parameters for the “network-only model” are reported in the 
first column in Table 2. The hypotheses derived from structural balance theory 
(H

1
 to H

4
) are fully supported by our analysis. The parameter associated with 

friendOfFriend is significantly positive, supporting H
1
. This implies that 

actors have a tendency to cooperate with the friends of their friends: the more 
b is connected by past cooperative events to a third actor c who, in turn, is 
connected by past cooperative events to a, the higher (i. e., more cooperative) 
is the average weight of future events from a to b. The parameter associated 

Table 2: Estimated conditional type parameters and
standard errors (in brackets).

statistic event network model covariate model combined model
inertia+ 0.214 (0.012)* · 0.192 (0.012)*
inertia− -0.085 (0.003)* · -0.071 (0.003)*
reciprocity+ 0.124 (0.014)* · 0.075 (0.014)*
reciprocity− -0.082 (0.004)* · -0.052 (0.004)*

friendOfFriend 0.246 (0.027)* · 0.138 (0.027)*
enemyOfFriend -0.206 (0.014)* · -0.119 (0.015)*
friendOfEnemy -0.224 (0.015)* · -0.137 (0.015)*
enemyOfEnemy 0.113 (0.008)* · 0.057 (0.008)*

activitySource+ 0.051 (0.003)* · 0.009 (0.004)*
activitySource− -0.008 (0.001)* · 0.001 (0.002)
activityTarget+ 0.040 (0.004)* · -0.006 (0.004)
activityTarget− 0.002 (0.002) · 0.013 (0.002)*
popularitySource+ -0.008 (0.005) · 0.023 (0.005)*
popularitySource− 0.003 (0.001)* · -0.007 (0.002)*
popularityTarget+ -0.020 (0.005)* · 0.005 (0.005)
popularityTarget− 0.004 (0.001)* · -0.005 (0.002)*

lnCapRatio · 0.002 (0.001)* -0.007 (0.001)*
allies · 0.118 (0.003)* 0.106 (0.003)*
polityWeakLink · 3.2E−4(1.8E−4) -0.001 (1.9E−4)*
minorPowers · 0.097 (0.003)* 0.042 (0.004)*
lnTrade · 0.028 (0.001)* 0.017 (0.001)*
contiguity · -0.093 (0.003)* -0.060 (0.003)*
lnDistance · 0.011 (0.001)* 0.013 (0.001)*
lnJointIGO · -0.097 (0.003)* -0.076 (0.003)*

constant -0.082 (0.001)* -0.017 (0.008)* -0.002 (0.008)
#events 217 479 200 886 200 886
log-likelihood -136 669 -137 844 -134 441
ll-ratio to M0 7 295 6 120 9 523
#params 17 9 25
BIC 273 547 275 798 269 187
AIC 273 372 275 706 268 932

1



26 LERNER–BUSSMANN–SNIJDERS–BRANDES

CORVINUS JOURNAL OF SOCIOLOGY AND SOCIAL POLICY  1 (2013) 

with friendOfEnemy and with enemyOfFriend are significantly negative, 
supporting H

2
 and H

3
 respectively. This implies that actors have a tendency 

to fight the friends of their enemies as well as the enemies of their friends. 
Finally, the parameter associated with enemyOfEnemy is significantly 
positive as predicted by hypothesis H

4
. This implies that actors in the Gulf 

conflict have a tendency to cooperate with the enemies of their enemies. 
The second column of Table 2 shows the parameters estimated for a 

“covariates-only model.” The main purpose of the politically relevant 
covariates is checking whether the network effects reported above are merely 
side-effects of certain actor or dyad characteristics. We do not wish to debate 
here the extent to which the conclusions obtained from this data analysis 
may be regarded as generalizable tests of IR theories: by restricting the data 
to a focused region, the Gulf, we have selected actors which have specific 
characteristics with respect to democracy, trade, geographic closeness, etc. 
The parameter associated with allies (binary variable encoding whether 
the two actors have at least one alliance or not) is significantly positive, 
supporting hypothesis H

5
. This implies that events tend to be more cooperative 

among allied actors. As we will see in the following, this result is robust to the 
inclusion of network effects and also to the exclusion of all other covariate 
statistics. Other parameters, which are not related to our hypotheses, are not 
discussed here. 

Finally, we estimate a model in which network effects and covariate effects 
are combined (third column in Table 2). It is remarkable that controlling 
for covariates does not change the signs of any parameter associated with 
inertia (positive and negative), reciprocity (positive and negative), and 
the four structural balance effects friendOfFriend, friendOfEnemy, 
enemyOfFriend, and enemyOfEnemy. In particular, the support for of 
structural balance theory (hypotheses H

1
 to H

4
) is robust and not just the 

side-effect of actor characteristics. There are some changes of parameters 
associated with covariates that are not related to our hypotheses. The effect 
of alliances on the conditional event type, however, remains significantly 
positive; i. e., allies interact more cooperatively if they interact. This gives 
further evidence that the validation of hypothesis H

5
 is robust and not just the 

result of uncontrolled network dependencies. 
To further test the robustness of the effect of alliances on the conditional 

event type we fit a bivariate model that contains only the alliance statistic 
as predictor (and a constant offset). In this model we obtain a significantly 
positive type parameter equal to 0.112 (0.002) for allies and a constant of 
–0.132 (0.001). In a different model built from the 16 network statistics (as 
above), the constant, and the alliance statistic (without any other covariate) 
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we estimate a significantly positive type parameter 0.077 (0.002) for 
allies. Thus, the effect of alliances on the conditional event type is indeed 
consistently positive. 

4.2 Event Frequency 

Table 3 shows the estimated rate parameters for three models, the first built 
from the seven unsigned network effects, the second built from the covariate 
statistics, and finally the joint model including both network and covariate 
effects. The log-likelihood of the null model M

0
 (no effects except the 

constant offset) is –1,629,098, its BIC is 3,258,208 and its AIC is 3,258,198. 
The maximized likelihood and information criteria for the other models 
are listed in Table 3. The information criteria show that here the covariate 
model is better than the network model, but the combination of networks and 
covariates yields a strong further model improvement. 

Table 3 Event rate parameters and standard errorsTable 3: Event rate parameters and standard errors.

statistic event network model covariate model combined model
inertia -0.114 (0.002) · −1.9E−4 (0.002)
reciprocity -0.090 (0.003) · 0.042 (0.003)

triangle 0.506 (0.002) · 0.348 (0.003)

activitySource 0.202 (0.001) · 0.161 (0.001)
activityTarget 0.168 (0.001) · 0.118 (0.001)
popularitySource 0.094 (0.001) · 0.073 (0.001)
popularityTarget 0.131 (0.001) · 0.119 (0.001)

lnCapRatio · -0.289 (0.002) -0.225 (0.002)
allies · 0.064 (0.006) -0.223 (0.006)
polityWeakLink · -0.137 (0.001) -0.122 (0.001)
minorPowers · -2.726 (0.007) -1.970 (0.007)
lnTrade · 0.062 (0.001) 0.142 (0.001)
contiguity · 1.362 (0.006) 1.310 (0.007)
lnDistance · -0.287 (0.002) -0.343 (0.002)
lnJointIGO · 1.344 (0.005) 1.313 (0.005)

constant -6.774 (0.002) -6.964 (0.017) -7.530 (0.016)
#events 217, 479 200, 886 200, 886
log-likelihood -1 302 411 -1 271 416 -1 029 255
ll-ratio to M0 326 687 357 682 599 843
#params 8 9 16
BIC 2 604 920 2 542 941 2 058 705
AIC 2 604 838 2 542 850 2 058 542

1
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The rate parameters estimated for the “network-only model” are reported 
in the first column in Table 3. The parameter associated with triangle is 
significantly positive, supporting hypothesis H

6
. This implies that activity is 

transitively closed: the more b is connected by past (cooperative or hostile) 
events to a third actor c who, in turn, is connected by past events to a, the 
higher is the frequency of future events from a to b. 

The rate parameters resulting from the “covariate-only model” are reported 
in the second column in Table 3. The rate parameter associated with allies 
is significantly positive. Thus, allied actors interact more frequently than non-
allied actors, giving support to hypothesis H

7
. It is interesting to consider 

this result together with the conditional type parameter associated with the 
allies statistic (see Table 2): allies interact more, and if they interact, their 
interaction is rather friendly. This might nevertheless lead to the observation 
that the absolute (rather than conditional) probability of conflictive interaction 
is higher among allies (compare Bremer 1992). 

Finally, we report the event frequency parameters in the combined model 
(third column in Table 3). The sign of the rate parameter associated with the 
triangle statistic did not change when covariates are included. In particular, 
the validation of hypothesis H

6
 (transitivity of activity) is robust to the 

inclusion of covariates. There is only one change in the signs of the covariate 
parameters when the model is augmented by network effects: the parameter 
associated with allies changes from significantly positive to significantly 
negative. Thus, the finding “allies interact more”, related to hypothesis H

7
, is 

sensitive to whether we control for past interaction on the dyad (inertia and 
reciprocity statistics), activity and popularity of the actors, and indirect 
relations (triangle statistic). Controlling for these network dependencies, 
allies do not interact with higher frequency. 

For comparison, we estimate a bivariate event frequency model that 
includes only the allies statistic and, as always, the constant. The rate 
parameter associated with the allies statistic in this model is 1.600 (0.005) 
and for constant we get a parameter of –6.700 (0.002). Thus, while allies 
consistently interact more cooperatively if they interact, the finding that allies 
interact more frequently is only a side-effect of ignored variables. Indeed, 
without any control variables we obtain the result that allies interact about 
e1.6 =4.95 times as much as non-allies. Controlling for the effects of other 
covariates, this factor is reduced to (approximately) e0.064 =1.07. Finally, 
controlling for covariates and network effects, a joint alliance membership 
even diminishes the rate of interaction by a factor of e–0.223 =0.8. 

It is noteworthy that some covariates influence the frequency of interaction 
while others rather have an effect on the conditional event type. For instance, 
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in contrast to alliances, geographic adjacency (operationalized by the 
contiguity statistic) consistently increases the frequency of interaction, 
independent of whether we control for network dependencies or not. The 
effect of contiguity on the conditional event type is consistently negative 
so that–considering their frequent interaction–adjacent countries indeed are 
“dangerous dyads” (Bremer 1992). A different behavior can be seen for the 
lnCapRatio statistic (logarithmized capability ratio). While its effect on the 
event rate is consistently negative (unequal capability decreases interaction 
frequency), its effect on the conditional event type changes when we control 
for network dependencies: ignoring these leads to a seemingly positive effect 
(more cooperation when the capability ratio increases). In contrast, controlling 
for network effects yields a negative association between capability ratio 
and the conditional event type. The last-mentioned findings also emphasize 
the need to control for statistical dependency among dyadic observations: 
ignoring these might lead to spurious associations that vanish or even become 
reversed if network effects are taken into account. 

5 CONCLUSION 

We propose a general model for the dynamics of networks that are given as 
sequences of dyadic, typed events. Our model exploits the time information 
of event data and can test and control for potentially complex dependencies 
among dyadic observations. The most distinctive feature of our model is that 
we decompose the joint probability of typed events into two components, the 
first modeling the frequency of events of any type and the second modeling 
the conditional type of events, given that events happen. Thus, our model is an 
alternative to previously proposed models that estimate the rate of events of 
different types separately. This distinction indeed turned out to be crucial when 
tackling substantive research questions. For instance, previous work showed 
that enemies of enemies have a higher probability of engaging in conflict and 
in cooperation (Maoz et al. 2007), which simultaneously rejects and supports 
structural balance theory. In contrast, we showed that the conditional event 
type among enemies of enemies is pushed towards cooperation, which clearly 
supports SBT. Thus, our main methodological conclusion is the following: 
when we want to test a typical hypothesis in political network analysis, such 
as does condition X lead to more or less conflict, we have to clarify first 
whether we mean the absolute level of conflictive interaction or rather the 
tendency of conflict vs. cooperation, given that interaction occurs. 

The separation of the joint probability density into its rate component 
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and conditional type component provides deeper insight into how specific 
predictors increase or decrease the probabilities of events of a given type. For 
instance, alliance ties increase the probability of dyadic conflict in a bivariate 
model without any control variables. This result is refined by our model: 
alliances push the conditional event type towards cooperation–independent 
of which control variables we use. Thus, given that two actors do interact, 
their interaction is more friendly and less conflictual if they are allies. On 
the other hand, the finding that allies interact more frequently is only due to 
uncontrolled variables; if we control for network effects and other covariates, 
alliances even decrease the event frequency. Thus, alliance ties co-occur with 
frequent interaction but, apparently, they do not cause it. 

We emphasize that the concrete empirical findings that have been included 
for illustration in this paper should be treated with caution for at least two 
reasons. First, the KEDS data includes dyadic events only if they have 
been reported in the news. Thus, issues such as news bias or media fatigue 
might influence the results in a systematic way. This is, strictly spoken, not 
a problem with our model but rather of the particular data. When more and 
more event data become available the same model can be applied to data sets 
that (hopefully) suffer less from news bias. Second, the data we analyzed 
included events that are restricted to the Gulf region–thereby selecting actors 
that have specific characteristics with respect to democracy scores, geographic 
proximity, trade relations, capability, etc. An issue for future work is to repeat 
the analyses on global datasets that are not restricted to specific regions, e. g., 
King and Lowe (2003); O’Brian (2010). Otherwise, it remains unclear which 
of the observed patterns are special to the Gulf conflict and which ones are 
universal in the dynamics of international relations. 

The model itself leads also to several possibilities for extension and 
refinement. Obviously, the decomposition of the probability density of 
typed events into a rate component and a conditional type component, as in 
Eq. (2), is not restricted to one-dimensional real-valued event types. More 
general event types (such as binominal, multinomial, ordered multinomial, or 
multidimensional types) would just require the adaptation of the specification 
of the distribution for the conditional event type and the adaptation of the 
estimation procedure for the type parameters. Developing and applying 
models for more general event types is a promising area for future research. 



31MODELING FREQUENCY AND TYPE OF INTERACTION IN EVENT NETWORKS

CORVINUS JOURNAL OF SOCIOLOGY AND SOCIAL POLICY  1 (2013) 

REFERENCES 

Box-Steffensmeier, Janet M.-Bradford S. Jones (1997), “Time is of the essence: Event 
history models in political science,” American Journal of Political Science Vol. 41, 
No. 4, pp. 1414–1461. 

Brandes, Ulrik -Daniel Fleischer -Jürgen Lerner (2006), “Summarizing dynamic 
bipolar conflict structures,” IEEE Transactions on Visualization and Computer 
Graphics Vol. 12, No. 6, pp. 1486–1499. 

Brandes, Ulrik -Jürgen Lerner (2008), “Visualization of conflict networks,” in: 
Kauffmann, Mayeul, ed., Building and Using Datasets on Armed Conflicts, IOS 
Press, pp. 169–188. 

Brandes, Ulrik -Jürgen Lerner -Tom A. B. Snijders (2009), “Networks evolving 
step by step: Statistical analysis of dyadic event data,” in Proc. 2009 Intl. Conf. 
Advances in Social Network Analysis and Mining, IEEE Computer Society, pp. 
200–205. 

Bremer, Stuart A. (1992), “Dangerous dyads: Conditions affecting the likelihood of 
interstate war, 1816–1965,” Journal of Conflict Resolution Vol. 36, No. 2, pp. 
309–341. 

Bueno de Mesquita, Bruce (1981), The War Trap, Yale University Press. 
Butts, Carter T. (2008), “A relational event framework for social action,” Sociological 

Methodology Vol. 38, No. 1, pp. 155–200. 
Cartwright, Dorwin -Frank Harary (1956), “Structural balance: A generalization of 

Heider’s theory,” The Psychological Review Vol. 63, No. 5, pp. 277–293. 
Crescenzi, Mark J. C. (2007), “Reputation and interstate conflict,” American Journal 

of Political Science Vol. 51, No. 2, pp. 382–396. 
De Nooy, Wouter (2008), “Signs over time: Statistical and visual analysis of a 

longitudinal signed network,” Journal of Social Structure Vol. 9, No. 1. 
De Nooy, Wouter (2011), “Networks of action and events over time. A multilevel 

discrete-time event history model for longitudinal network data,” Social Networks 
Vol. 33, No. 1, pp. 31–40. 

Goldstein, Joshua S. (1992), “A conflict-cooperation scale for WEIS international 
events data,” Journal of Conflict Resolution Vol. 36, No. 2, pp. 369–385. 

Goldstein, Joshua S. -Jon C. Pevehouse -Deborah J. Gerner -Shibley Telhami (2001), 
“Reciprocity, triangularity, and cooperation in the Middle East, 1979-97,” Journal 
of Conflict Resolution Vol. 45, No. 5, pp. 594–620. 

Hafner-Burton, Emilie M. -Alexander H. Montgomery (2006), “Power positions: 
International organizations, social networks, and conflict,” Journal of Conflict 
Resolution Vol. 50, No. 1, pp. 3–27. 

Hegre, Havard (2008), “Gravitating toward war: Preponderance may pacify, but power 
kills,” Journal of Conflict Resolution Vol. 52, No. 4, pp. 566–589. 

Heider, Fritz (1946), “Attitudes and cognitive organization,” The Journal of 
Psychology Vo. 21, pp. 107–112. 



32 LERNER–BUSSMANN–SNIJDERS–BRANDES

CORVINUS JOURNAL OF SOCIOLOGY AND SOCIAL POLICY  1 (2013) 

Hoff, Peter D. -Michael D. Ward (2004), “Modeling dependencies in international 
relations networks,” Political Analysis Vol. 12, No. 2, pp. 160–175. 

KEDS (2012), “http://eventdata.psu.edu/data.dir/gulf.html,” Web-page, last accessed 
on September 20th, 2012. 

Kimball, Anessa L. (2006), “Alliance formation and conflict initiation: The missing 
link,” Journal of Peace Research Vol. 43, No. 4, pp. 371–389. 

King, Gary Will Lowe (2003), “An automated information extraction tool for 
international conflict data with performance as good as human coders: A rare 
events evaluation design,” International Organizations Vol. 57, pp. 617–642. 

Lawless, Jerald F. (2003), Statistical Models and Methods for Lifetime Data, Wiley. 
Maoz, Zeev (2009), “The effects of strategic and economic interdependence on 

international conflict across levels of analysis,” American Journal of Political 
Science Vol. 53, No. 1, pp. 223–240. 

Maoz, Zeev -Lesley G. Terris -Ranan D. Kuperman -Ilan Talmud (2007), “What is 
the enemy of my enemy? Causes and consequences of imbalanced international 
relations, 1816–2001,” Journal of Politics Vol. 69, No. 1, pp. 100–115. 

McClelland, Charles A. (1976), “World Event/Interaction Survey Codebook (ICPSR 
5211)” . 

O’Brian, Sean P. (2010), “Crisis early warning and decision support: Contemporary 
approaches and thoughts on future research,” International Studies Review Vol. 
12, pp. 87–104. 

Oneal, John R. – Bruce Russett (2005), “Rule of three, let it be? When more really 
is better,” Conflict Management and Peace Science Vol. 22, No. 4, pp. 293–310. 

Robins, Garry -Tom A. B. Snijders -Peng Wang -Mark Handcock -Philippa Pattison 
(2007), “Recent developments in exponential random graph (p*) models for social 
networks,” Social Networks Vol. 29, No. 2, pp. 192–215. 

Russett, Bruce–John R. Oneal (2001), Triangulating peace -democracy, 
interdependence, and international organizations, W.W. Norton & Company. 

Schrodt, Phillip A. -Shannon G. Davis -Judith L. Weddle (1994), “Political science: 
KEDS–a program for the machine coding of event data,” Social Science Computer 
Review Vol. 12, No. 3, pp. 561–588. 

Snijders, Tom A. B. (2005), “Models for longitudinal network data,” in: Carrington, 
Peter J. -John Scott -Stanley Wasserman, eds., Models and Methods in Social 
Network Analysis, Cambridge University Press. 

Snijders, Tom A. B. – Gerhard G. van de Bunt – Christian E. G. Steglich (2010), 
“Introduction to actor-based models for network dynamics,” Social Networks Vo. 
32, pp. 44–60. 

Stadtfeld, Christoph (2010), “Who Communicates With Whom? Measuring 
Communication Choices on Social Media Sites,” in Proc. IEEE 2nd Intl. Conf. 
Social Computation (SocialCom), pp. 564–569. 

Young, G. A. and Smith, R. L. (2005), Essentials of Statistical Inference, Cambridge 
University Press. 


